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Abstract
We present an extensive study on the Bergman kernel expansions and the random
zeros associated with the high tensor powers of a semipositive line bundle on a com-
plete punctured Riemann surface. We prove several results for the zeros of Gaussian
holomorphic sections in the semi-classical limit, including the equidistribution, large
deviation estimates, central limit theorem, and number variances.
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1 Introduction

This paper aims to give an extensive study on the Bergman kernel expansions and the
random zeros under the semi-classical limit associated to the high tensor powers of a
semi-positively curved (semipositive for short) line bundle on a complete punctured
Riemann surface.

The first half of this paper, including the results for the spectral gap and Bergman
kernel expansions, was done in the Ph.D. thesis of the second named author [51]. Then,
following the recent work of the first named author with Drewitz and Marinescu [24–
26], we applied these results to study the zeros of the Gaussian holomorphic sections
for the semipositive line bundles, including equidistribution, large deviation estimates,
the central limit theorem, and number variances.

An effective approach for Bergman kernel expansions is the method of analytic
localization as explained in detail by Ma and Marinescu in their book [31]. A key
ingredient in their method is the spectral gap of Kodaira Laplacians that holds for
the uniformly positive line bundles on complete Hermitian manifolds (the metrics are
always taken to be smooth unless we say otherwise). However, for semipositive line
bundles (the Chern curvature form is nonnegative), there are examples (see [23]) of
compact Hermitian manifolds with complex dimension � 2 such that the spectral gap
does not hold. For the semipositive line bundles on a compact Riemann surface, a
certain spectral gap always holds, provided that the Chern curvature admits at least a
strictly positive point.

Recently, Marinescu and Savale [32, 33] worked out precisely the spectral gap by
subelliptic estimates for this setting under the assumption that Chern curvature van-
ishes at most to finite order on the compact Riemann surface. Then they obtained
the asymptotic expansions of the Bergman kernel functions, that is, the on-diagonal
Bergman kernels. Their result shows that the expansion factors at the vanishing points
of the Chern curvature are different from the non-vanishing points. In this paper, we
extend further their work to the case of complete punctured Riemann surfaces and
provide the results for the near-diagonal expansions of Bergman kernels. It is impor-
tant to note that our focus is restricted to Riemann surfaces. In higher-dimensional
cases, it remains unclear whether the spectral gap for the Kodaira Laplacians, as in
[32, 33], would still hold when the line bundle is assumed to be semipositive with
finite vanishing orders. Moreover, Hsiao and Savale [28] obtained the Szegő kernel
expansions for circle-invariant, weakly pseudoconvex 3-dimensional CR manifolds,
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which corresponds to the Bergman kernel expansions for the semipositive line bun-
dles on the compact Riemann surfaces possibly with orbifold singularities (rather than
punctures). For semipositive or big line bundles with singular metrics on complex
manifolds of general dimension, there are also other approaches such as L2-estimates
for ∂̄-operator to study the Bergman kernels; see [8, 16, 20] (but without the full
expansion of the Bergman kernels).

The complete punctured Riemann surfaces that are the subject of this paper have
already been examined by Auvray, Ma and Marinescu [1–3], where they obtained
the expansions of Bergman kernels for the high tensor powers of a uniformly pos-
itive line bundle under the assumption of Poincaré metric near the punctures. The
important examples for this model of Riemann surfaces are arithmetic surfaces, on
which the holomorphic sections correspond to cusp forms (see [2] or [25, Section
4]). A remarkable idea presented in [1–3] involves comparing the Bergman kernels
near the punctures with the model Bergman kernels for the Poincaré punctured disc.
In particular, they proved that the quotients of these two Bergman kernel functions
converge to one uniformly near the punctures as the tensor powers tend to infinity (see
[3, Theorem 1.2]). Some of their results have been further generalized by Zhou [50]
to higher-dimensional Kähler manifolds with complex hyperbolic cusps. Note that for
positive line bundles on punctured Riemann surfaces equipped with non-smooth met-
rics, Coman, Klevtsov andMarinescu [14] obtained the estimates and the leading term
of the Bergman kernel functions and then discussed several interesting applications.

In [25], the first named author with Drewitz andMarinescu applied the results from
[1, 2] to study the zeros of random holomorphic sections for a positive line bundle
on the complete punctured Riemann surface. In particular, estimates for large devia-
tions and hole probabilities were established following the seminal work of Shiffman,
Zelditch and Zrebiec [43]. In this paper, we investigate the above problems under the
semipositive condition; see Theorems 1.3.2, 1.4.2, and Proposition 1.4.3. Moreover,
we go further to work out the smooth statistics such as number variance and central
limit theorem for the random zeros; see Theorems 1.5.2 and 1.5.3. We will see that the
existence of vanishing points of the Chern curvature form requires more techniques in
the proofs, but eventually, they will not contribute to the principal behaviors of random
zeros. It remains interesting to study the subprincipal behaviors of random zeros to
identify the contribution of vanishing points.

The random zeros as point processes on Riemann surfaces provide a valuablemodel
for quantum chaotic dynamics as in [10, 35]. In [47, 49], Zeitouni and Zelditch studied
the large deviation principle for zeros for compact Riemann surfaces; we also refer to
[19, 34, 46] for recent breakthroughs on this topic, in particular, the hole probabilities
of random zeros on compact Riemann surfaces (cf. Proposition 1.4.3).

Shiffman and Zelditch [40] first established the general framework for the random
zeros of holomorphic sections inKähler geometry, by using theBergman kernel expan-
sions. Then in their series of work [39–43], the equidistribution, the large deviation,
the number variance, and the central limit theorem for random zeros were proven for
the positive line bundles on compact Kähler manifolds. The first named author with
Drewitz and Marinescu in their work [24–26] extended the aforementioned results
to the uniformly positive line bundles on non-compact Hermitian manifolds. In par-
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ticular, a probabilistic Berezin-Toeplitz quantization was introduced in [24, 26] by
considering square-integrable Gaussian holomorphic sections.

Note that Dinh and Sibony [22] gave a different approach for the equidistribution
of random zeros which also provides estimates for the speed of convergence, see [20,
21]. We also refer the reader to the survey [5] for more references on the topics of
random zeros in complex geometry.

Now, we give in detail the geometric setting and the main results of this paper.

1.1 Semipositive line bundles over punctured Riemann surfaces

Let �̄ be a compact Riemann surface, and let D = {a1, · · · , aN } ⊂ �̄ be a finite
set of points. We consider the punctured Riemann surface � = �̄\D together with a
Hermitian form ω� on �. We always fix an imaginary unit i = √−1.

Let T� denote the real tangent bundle of �, and let J ∈ End(T�) denote the
complex structure of �. Then we have the bidegree splitting

T� ⊗R C = T (1,0)� ⊕ T (0,1)�. (1.1.1)

Then ω� is a real (1, 1)-form such that ω�(·, J ·) is a Riemannian metric gT� on T�.
Moreover, ω� is Kähler. Let ∇T� denote the Levi-Civita connection associated with
gT� , then it preserves the splitting (1.1.1), we write it as

∇T� = ∇T (1,0)� ⊕∇T (0,1)�. (1.1.2)

In particular, ∇T (1,0)� is exactly the Chern connection on the holomorphic line bundle
T (1,0)� associated with the Hermitian metric hT

(1,0)�(·, ·) = gT�(·, ·̄).
Let L be a holomorphic line bundle on �̄, and let h be a singular Hermitian metric

on L such that:

(α) h is smooth over� and for all j ∈ {1, . . . , N } there exists a trivialization of L in
the neighborhood V̄ j of a j in �̄ with associated coordinate z j (a j corresponds
to z j = 0) such that

|1|2h (z j ) =
∣
∣
∣log

∣
∣z j
∣
∣2
∣
∣
∣ .

(β) The Chern curvature RL = (∇L)2 of h satisfies

(i) On �, we have iRL � 0.
(ii) For each j ∈ {1, . . . , N }, we have iRL = ω� on Vj := V̄ j\{a j }.
(iii) RL vanishes at most to finite order at any point x ∈ �, that is,

ordx (R
L) := min

{

� ∈ N : J �(�2T ∗�) 	 j�x R
L 
= 0

}

<∞,

where J �(�;�2T ∗�) denotes the �-th jet bundle over � (see Appendix).



Semipositive line bundles on punctured Riemann surfaces… Page 5 of 61    38 

By assumptions (α) and (β) - (ii), in the local coordinate z j on Vj , we have ω� =
ωD∗ is the Poincaré metric on punctured unit disc given as follows

ωD∗ = idz ∧ dz̄

|z|2 log2(|z|2) . (1.1.3)

Then (�, ω�) is complete, and the volumeof� with respect to theRiemannian volume
form ω� is finite. Let dist(·, ·) denote the Riemannian distance on �.

One typical example of a semipositive line bundle as described above is from
branched coverings. If f : � → �0 is a branched covering of a Riemann surface �0

with branch points {y1, . . . , yM } ⊂ �, the Hermitian holomorphic line bundle on �,
that is defined as the pullback of a positive one on �0, becomes semipositive with
curvature vanishing at the branch points (see [32, Example 17]).

For x ∈ �, we set

ρx = 2+ ordx (R
L) ∈ N�2. (1.1.4)

The function x �→ ρx is upper semi-continuous on �, and the assumptions (β) - (ii)
and (iii) infer that

ρ� := max
x∈�

ρx <∞ (1.1.5)

The semi-positivity in assumption (β) - (i) implies that ρx is even for all x ∈ �, and
so is ρ� . Moreover, we have a decomposition � = ⋃ρ�

j=2 � j , with � j := {x ∈ � :
ρx = j}; each �� j =⋃ j

j ′=2 � j ′ is open. In particular, �2 is an open dense subset of

�. Note that iRL is strictly positive on �2, consequently, we have

deg(L) =
∫

�

i
2π

RL > 0, (1.1.6)

so that L is ample, hence positive, over � (see also [37]).
From now on, we also fix a holomorphic line bundle E over � with a smooth

Hermitian metric hE , and we assume that (E, hE ) is identical to the trivial complex
line bundle with the trivial Hermitian metric on each Vj (in assumption (β)).

For p � 1, we denote by h p := h⊗p ⊗ hE the metric induced by h on L p ⊗ E :=
L⊗p⊗ E on �. Let H0(�, L p⊗ E) be the space of holomorphic sections of L p⊗ E
on� and let L2(�, L p⊗ E) be the space of L2-sections of L p⊗ E on� with respect
to h p and ω� . Set

H0
(2)(�, L p ⊗ E) = H0(�, L p ⊗ E) ∩ L2(�, L p ⊗ E), (1.1.7)

which is equipped with the associated L2-metric. Then by the integrability near the
punctures, the sections in H0

(2)(�, L p⊗E) extend to holomorphic sections of L p over

�:



   38 Page 6 of 61 B. Liu, D. Zielinski

H0
(2)(�, L p ⊗ E) ⊂ H0(�, L p ⊗ E). (1.1.8)

Moreover, for p � 2, elements in H0
(2)(�, L p ⊗ E) are exactly the sections in

H0(�, L p⊗ E) that vanish on the puncture divisor D (cf. [2, Remark 3.2] [3, Section
4]). Let g denote the genus of �. Then by the Riemann-Roch formula for p � 1, we
have

dp := dim H0
(2)(�, L p ⊗ E) = p deg(L)+ deg(E)+ 1− g − N (1.1.9)

Let

Bp : L2(�, L p ⊗ E) −→ H0
(2)(�, L p ⊗ E) (1.1.10)

denote the orthogonal projection, which is known as Bergman projection. We will
denote its Schwartz kernel, the Bergman kernel, by Bp(x, y) for x, y ∈ �. If S p

j ,

j ∈ {1, . . . , dp} is an orthonormal basis of H0
(2)(�, L p ⊗ E) with respect to the

L2-inner product, then

Bp(x, y) =
dp
∑

j=1
S p
j (x)⊗ S p,∗

j (y) ∈ (L p ⊗ E)x ⊗ (L p ⊗ E)∗y, for x, y ∈ �,

(1.1.11)

where the duality is defined by h p. In particular, Bp(x) := Bp(x, x) is a nonnegative
smooth function in x ∈ �, which is called the Bergman kernel function.

1.2 Spectral gap and Bergman kernel expansion

With the geometric setting described in the previous section, one of themain objects of
investigation in this paper is the asymptotic expansion of theBergmankernels Bp(x, y)
as p→+∞. There are two ingredients in our approach: the first one extends the result
ofMarinescu and Savale [32, 33] for a semipositive line bundle on a compact Riemann
surface to our punctured Riemann surface, from which we prove a spectral gap for the
Kodaira Laplacians; the second is the technique of analytic localization developed by
Dai–Liu–Ma [17] and Ma–Marinescu [31], which is inspired by the work of Bismut–
Lebeau [9] in local index theory. In order to deal with the Bergman kernel near the
punctures, we will follow the seminal work of Auvray, Ma, and Marinescu [1, 2].

Theorem 1.2.1 (Spectral gaps) Let � be a punctured Riemann surface, and let L be a
holomorphic line bundle as above such that L carries a singular Hermitian metric h
satisfying conditions (α) and (β). Let E be a holomorphic line bundle on � equipped
with a smoothHermitianmetric hE such that (E, hE ) on each chart Vj is exactly trivial
Hermitian line bundle. Consider the Dirac operator Dp and Kodaira Laplacian �p

as in Sect. 2.1. Then there exist constants C1,C2 ∈ R>0 independent of p, such that
for all s ∈ �

0,1
c (�, L p ⊗ E),
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(i) the Dirac operators are bounded from below,

‖Dps‖2L2 � 2(C1 p
2/ρ� − C2)‖s‖2L2 , (1.2.1)

(ii) for p ∈ N, we have

Spec(�p) ⊂ {0} ∪
[

C1 p
2/ρ� − C2,+∞

[

. (1.2.2)

In particular, we have the first L2-Dolbeault cohomology group (see Sect. 2.1)

H1
(2)(�, L p ⊗ E) = 0

for p � 0.

The proof of the spectral gap will be given in Sect. 2.2. As a consequence, we have
the following pointwise expansions for the Bergman kernel functions, which extend
the result of Marinescu and Savale [32, Theorem 3] to our non-compact setting.

Theorem 1.2.2 (Asymptotic expansion of Bergman kernel functions) We assume the
same conditions on �, L and E as in Theorem 1.2.1. Fix ρ0 ∈ {2, 4, . . . , ρ�}, and
let W : [0, 1] 	 s �→ W (s) ∈ � be a smooth path such that W (s) ∈ �ρ0 for all
s ∈ [0, 1]. Then for every r ∈ N, there exists a smooth function br (x) in x ∈ W ([0, 1])
such that for any k ∈ N, we have the following asymptotic expansion of Bergman
kernel functions uniformly on W ([0, 1]),

Bp(x) = p2/ρ0

[
k
∑

r=0
br (x)p

−2r/ρ0
]

+O(p−2k/ρ0) , (1.2.3)

where the expansion holds in any C �-norms on W ([0, 1]) with � ∈ N. Moreover, for
x ∈ W ([0, 1]),

b0(x) = B j
ρ0−2
x RL

(0, 0) > 0, (1.2.4)

where jρ0−2x RL ∈ iSρ0−2R2⊗�2(R2)∗ is defined as the (ρ0−2)-degree homogeneous
part of the Taylor expansion of RL in the geodesic normal coordinate centered at x,

and B j
ρ0−2
x RL

is the model Bergman projection that will be defined in Sect. 4.1.
For t ∈ ]0, 1[ , γ ∈ ]0, 1

2 [ , �,m ∈ N, and Vj described in assumption (α) with
coordinate z j (it is clear that ρz j = 2), the following expansions hold uniformly in

C �-norm for points z j ∈ D
∗(a j ,

1
6 )\D∗(a j , te−pγ

),

Bp(z j ) = p − 1

2π
+O(p−m). (1.2.5)
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Define the nonnegative bounded smooth function c on � as follows,

c(x) = iRL
x

ω�(x)
� 0. (1.2.6)

Then for the points x ∈ �2 (that is c(x) > 0), the function given in (1.2.4) is

b0(x) = c(x)
2π

. (1.2.7)

In particular, as in (1.2.5), b0(x) = 1
2π (or, equivalently, c(x) = 1) near the punctures.

For t ∈ ]0, 1[ , γ ∈ ]0, 1
2 [ , set

�p,t,γ = �\
N
⋃

j=1
D
∗(a j , te

−pγ

), (1.2.8)

where D
∗(a j , te−pγ

) denote the punctured (open) disc of radius te−pγ
centered at a j

in the coordinate z j ∈ Vj described in assumption (α). Then we have the convergence
of subsets

lim
p→+∞�p,t,γ = �.

As a consequence of Theorem 1.2.2, we have the following uniform upper bound on
Bp(x) when x stays in �p,t,γ .

Corollary 1.2.3 Set

C0 := sup
x∈�

c(x)
2π

� 1

2π
. (1.2.9)

Then for any fixed t ∈ ]0, 1[ , γ ∈ ]0, 1
2 [ , we have for p � 1,

sup
x∈�p,t,γ

Bp(x) � C0 (1+ o(1)) p, (1.2.10)

where the small o-term o(1) is uniform in x ∈ �p,t,γ as p→+∞.

In the pointwise expansion of Bp(x), the leading term grows as p2/ρx (ρx � 2).
Corollary 1.2.3 describes this upper bound for the point x ∈ �p,t,γ , which still keeps
at least an exponentially small distance from the punctures. However, our assumptions
about punctures implies that a global supremum of Bp(x) on � will behave like p3/2,
as p → +∞, following the work of Auvray–Ma–Marinescu [2] for the Poincaré
punctured disc.
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Proposition 1.2.4 We assume the same conditions on �, L and E as in Theorem 1.2.1
with the number of punctures N � 1. We have

sup
x∈�

Bp(x) =
( p

2π

)3/ 2 +O(p). (1.2.11)

The proofs of Theorem 1.2.2, Corollary 1.2.3, and Proposition 1.2.4 will be pre-
sented in Sect. 4.4. In Theorem 4.4.1 we also obtain the pointwise expansions of
the derivatives of Bp(x). Moreover, considering the Kodaira maps defined with
H0

(2)(X , L p ⊗ E), a version of Tian’s approximation theorem [45] will be given in
Sect. 5.2.

In [33, Section 3.1], on a compact Riemann surface equipped with a semipositive
line bundle, the uniform estimates of the upper and lower bounds for the Bergman
kernel functionswere discussed (in this case, Proposition 1.2.4 does not apply), and the
analogous results can be smoothly extended to our setting. Here, we will not discuss
such uniform estimates, but we will focus on the near-diagonal expansions of Bp,
Theorems 4.3.1 and 4.3.2, and their consequences for the study of random zeros in
�. More precisely, we will be concerned with the semi-classical limit of the zeros of
the Gaussian holomorphic sections for the higher tensor powers of L but associated to
a semipositive Hermitian metric on L . The following three subsections are dedicated
to explain our results for random zeros, which lie in the framework of the smooth
statistics of random point processes on �.

Now, as an extension of [2, Proposition 5.3], we give off-diagonal estimates for
the Bergman kernels; see Sect. 3.1 for a proof. Fix 0 < r < e−1, and fix a smooth
function η : � → [1, ∞[ such that η(z) = | log |z|2| for z ∈ D

∗
r near each puncture.

Proposition 1.2.5 (Off-diagonal estimates onBergmankernels)Fix a sufficiently small
ε > 0. Given m, � ∈ N, γ > 1/2 , there exists C�,m,γ > 0 such that for z, z′ ∈ �,
dist(z, z′) � ε, we have

∣
∣η(z)−γ η(z′)−γ Bp(z, z

′)
∣
∣
C m (h p)

� C�,m,γ p
−�, (1.2.12)

where | · |C m (h p) is the C
m-norm induced by gT� , h p and the corresponding connec-

tions.

1.3 Equidistribution of zeros of Gaussian holomorphic sections

Recall that, with the assumptions described in Sect. 1.1, H0
(2)(�, L p ⊗ E) equipped

with the L2-inner product is a Hermitian vector space of dimension dp <∞.
For a non-trivial holomorphic section sp ∈ H0

(2)(�, L p⊗E), the zeros of sp consist
of isolated points in �. We consider the divisor

Div(sp) :=
∑

x∈�, sp(x)=0
mx · x, (1.3.1)
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where mx denotes the multiplicity of x as a zero of sp (or vanishing order). Then we
define the following measure on �,

[Div(sp)] :=
∑

sp(x)=0
mxδx , (1.3.2)

where δx denotes the Dirac mass at x .
Then the Poincaré-Lelong formula states an identity for the distributions on �,

[Div(sp)] = i
2π

∂∂ log |sp(x)|2h p
+ pc1(L, h)+ c1(E, hE ). (1.3.3)

At the same time, we introduce the following norm for the distributions on �: let T
be a distribution on �, for any open susbet U ⊂ �, define

‖T ‖U ,−2 := sup
ϕ
|〈T , ϕ〉|, (1.3.4)

where the supremum is taken over all the smooth test functions ϕ with support in U
and such that their C 2-norm satisfies ‖ϕ‖C 2 � 1.

In the sequel, our main object is to study the asymptotic behaviours of [Div(sp)]
for random sequences of sp’s as p → +∞, which can be viewed as a random point
process on �. Let us start with the Gaussian holomorphic sections.

Definition 1.3.1 (Standard Gaussian holomorphic sections) On H0
(2)(�, L p ⊗ E), we

define the standard Gaussian probability measure Pp associated to the L2-inner prod-
uct. Let Sp be the random variable valued in H0

(2)(�, L p⊗ E)with the law Pp, which
is called the standard Gaussian holomorphic sections of (L p ⊗ E, h p) over �. We
also set the product probability space

(H∞, P∞) :=
∏

p

(

H0
(2)(�, L p ⊗ E), Pp

)

whose elements are the sequences {sp}p of holomorphic sections.

We have an equivalent definition. Let {S p
j }

dp
j=1 be an orthonormal basis of

H0
(2)(�, L p ⊗ E) and let {ηp

j }
dp
j=1 be a vector of independent and identically dis-

tributed (i.i.d.) standard complex Gaussian variables (that is NC(0, 1)), then we can
also write

Sp =
dp
∑

j=1
η
p
j S

p
j . (1.3.5)

Note that these random variables are taken independently for different p’s. We will
always use equally the above two models to state our results.
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Nowwe can give the equidistribution results for the random zeros [Div(Sp)], which
states that the measures defined from random zeros will asymptotically converge to
the semipositive smooth measure c1(L, h) on �. The proof will be given in Sect. 5.3,
and we refer to Definition 5.2.1 for the notion of convergence speed.

Theorem 1.3.2 (Equidistribution of [Div(Sp)])We assume the same conditions on �,
L and E as in Theorem 1.2.1.

(i) The expectation E[[Div(Sp)]], as a measure on � , exists, and as p→+∞, we
have the weak convergence of measures

1

p
E[[Div(Sp)]] −→ c1(L, h), (1.3.6)

and for any relatively compact open subset U in �, the above convergence has
the convergence speedO(log p/p) on U, that is, there exists a constant CU > 0
such that

∥
∥
∥
∥

1

p
E
[[Div(Sp)]

]− c1(L, h)

∥
∥
∥
∥
U ,−2

� CU
log p

p
.

(ii) ForP∞-almost every sequence {sp}p ,wehave theweak convergenceofmeasures
on �,

1

p
[Div(sp)] −→ c1(L, h). (1.3.7)

Moreover, given any relatively compact open subset U ⊂ � , for P∞-almost
every sequence {sp}p , the above convergence on U has convergence speed
O(log p/p).

In order to obtain the convergence speed in Theorem 1.3.2 - (ii), we need to use a
result - Theorem 5.3.1 - of Dinh,Marinescu, and Schmidt [21] (see also [20, Theorems
1.1 and 3.2]), motivated by the ideas of Dinh and Sibony [22].

1.4 Normalized Bergman kernel and large deviations of random zeros

Now we consider the normalized Bergman kernel, which will play the role of correla-
tion functions of Sp (in Definition 1.3.1), viewed as the holomorphic Gaussian fields
on �. The normalized Bergman kernel is defined as

Np(x, y) =
|Bp(x, y)|h p,x⊗h∗p,y
√

Bp(x, x)
√

Bp(y, y)
, x, y ∈ �. (1.4.1)

Due to the positive of L on�, for any compact subset K of� and all sufficiently large
p � 1, the function Np(x, y) is smooth on K × K with values in [0, 1].

Let injU denote the injectivity radius for a subsetU ⊂ � (see (4.2.1)). Thenwe have
the following near-diagonal expansions of Np(x, y) only for the points x, y ∈ �2.
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At a vanishing point x of RL , due to the lack of the explicit formula for the model

Bergman kernel B
RL
0

x , such near-diagonal expansions remain unclear.

Theorem 1.4.1 Let U be a relatively compact open subset of �2 ⊂ � (hence iRL is
strictly positive on U), and set

ε0 := inf
x∈U c(x) > 0,

where c(x) = iRL
x /ω�(x) is a strictly positive function on �2. Then there exists

δU ∈ ]0, injU /4[ such that we have the following uniform estimate on the normalized
Bergman kernel: fix k � 1 and b �

√
12k/ε0 , then we have

(i) There exists C > 0 such that for all p with b
√
log p/p � δU , and all x, y ∈ U

with dist(x, y) � b
√
log p/p we have Np(x, y) � Cp−k .

(ii) There exist functions

Rp :
{

(x, y) ∈ U ×U : dist(x, y) � b
√

log p
p

}

→ R

such that sup |Rp| → 0 as p → ∞ , and such that for all sufficiently large p
and all x, y ∈ U with dist(x, y) � b

√
log p/p,

Np(x, y) = (1+ Rp(x, y)) exp

{

− c(x)p
4

dist(x, y)2
}

. (1.4.2)

(iii) Moreover, for any ε ∈ ]0, 1/2] , there exists C = C(U , b, k, ε) > 0 such that
for all sufficiently large p ,

sup |Rp| � Cp−1/2+ε. (1.4.3)

In the case of compact Kähler manifolds with positive line bundles, such results
were established in [41, Propositions 2.6 and 2.7] and in [43, Proposition 2.1]. In the
non-compact complete Hermitian manifolds with uniformly positive line bundles, by
applying the Bergman kernel expansion obtained byMa andMarinescu [31, Theorems
4.2.1 and 6.1.1], such results are proven in [25, Theorems 1.8 and 5.1] (see also [24,
Theorem 3.13]). Note that, comparing with [25, Theorems 1.8], we have improved
some estimates in our Theorem 1.4.1. For normalized Berezin-Toeplitz kernels, the
analogous result was given in [26, Theorem 1.20 and Corollary 1.21].

Recall that the Gaussian holomorphic section Sp is constructed in Definition 1.3.1.
For any open subset U ⊂ �, set

NU
p (Sp) :=

∫

U
[Div(Sp)] =

∑

x∈U ,Sp(x)=0
mx . (1.4.4)

Then NU
p (Sp) is a random variable valued in N.
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Note that c1(L, h) defines a nonnegative smooth measure on�, for any open subset
U , we set

AreaL(U ) :=
∫

U
c1(L, h). (1.4.5)

As a consequence of Theorem 1.4.1, we obtain the following results for random
zeros, which generalize [43, Corollary 1.2 and Theorem 1.4] and [25, Theorem 1.5,
Corollary 1.6]. Their proof will be given in Sect. 5.4.

Theorem 1.4.2 (Large deviation estimates or concentration inequalities) We assume
the same conditions on �, L and E as in Theorem 1.2.1.

(i) If U is a relatively compact open subset in �, then for any δ > 0, there exists a
constant Cδ,U > 0 such that for p � 0 the following holds:

Pp

(∥
∥
∥
∥

1

p
[Div(Sp)] − c1(L, h)

∥
∥
∥
∥
U ,−2

> δ

)

� e−Cδ,U p2 . (1.4.6)

(ii) If U is an open set of� with ∂U having zero measure with respect to some given
smooth volume measure on� (U might not be relatively compact in�), then for
any δ > 0, there exists a constant C ′δ,U > 0 such that for p � 0 the following
holds:

Pp

(∣
∣
∣
∣

1

p
NU

p (Sp)− AreaL(U )

∣
∣
∣
∣
> δ

)

� e−C
′
δ,U p2

. (1.4.7)

As a consequence, for P∞-almost every sequence {sp}p ∈ H∞ , we have

1

p
NU

p (sp) −→ AreaL(U ). (1.4.8)

Proposition 1.4.3 (Hole probabilities) IfU is a nonempty open set of� with ∂U having
zero measure in �, then there exists a constant CU > 0 such that for p � 0,

Pp

(

NU
p (Sp) = 0

)

� e−CU p2 . (1.4.9)

If U is a relatively compact open subset of � such that ∂U has zero measure in �,
and if there exists a section τ ∈ H0

(2)(�, L) such that it does not vanish in U ⊂ �,
then there exists C ′U ,τ > 0 such that for p � 0,

Pp

(

NU
p (Sp) = 0

)

� e−C
′
U ,τ p

2
. (1.4.10)
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1.5 Number variance and central limit theorem

Under the geometric assumptions in Sect. 1.1, set

�∗ :=
⋃

j�4

� j = {z ∈ � : RL
z = 0} (1.5.1)

for the set of points in � where the curvature vanishes. Then it is known that the
compact set �∗ has a measure zero with respect to ω� (see also Lemma 5.5.6).

Definition 1.5.1 Let ϕ be a real C 3-function on �, we define a C 1-functionL (ϕ) on
�2 (we have to exclude the vanishing points of c1(L, h)) by the following identity

i∂∂ϕ = L (ϕ)c1(L, h). (1.5.2)

In fact, up to a constant factor, L (ϕ) is exactly the action of the Laplacian operator
on ϕ where the Laplacian operator is associated with the Hermitian metric c1(L, h)

on �2.
To shorten our statements, we introduce the following class of test functions on �:

T 3(L, h) :=
{

ϕ ∈ C 3
c (�, R) : ∂∂ϕ ≡ 0 in a tubular neighbourhood of�∗

}

.

(1.5.3)

Then for ϕ ∈ T 3(L, h), the real function L (ϕ) is well-defined globally on � that is
identically zero near �∗.

Recall that the definitionof convergence in distribution is given as the pointwise con-
vergence of the distribution functions towards the distribution function of the limiting
random variable in all points of continuity. The following result shows the asymptotic
normality of the random zeros in � under semi-classical limit, whose proof will be
given in Sect. 5.6.

Theorem 1.5.2 (Central limit theorem) We assume the same conditions on �, L and
E as in Theorem 1.2.1. Let ϕ ∈ T 3(L, h) be such that ∂∂ϕ 
≡ 0, set

Yp(ϕ) := 〈[Div(Sp)], ϕ
〉

, (1.5.4)

then as p→∞, the distribution of the random variables

Yp(ϕ)− E[Yp(ϕ)]
√

Var[Yp(ϕ)] (1.5.5)

converges weakly to NR(0, 1), standard real normal distribution.

Suchkindof results as abovewere obtainedbySodin–Tsirelson [44,MainTheorem]
for Gaussian holomorphic functions and by Shiffman–Zelditch [42, Theorem 1.2]
for positive line bundles on compact Kähler manifolds. Moreover, as pointed out
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in [24, Remark 3.17], this result also holds for the standard Gaussian holomorphic
sections {Sp}p on noncompact Hermitian manifolds. Then in [26, Theorem 1.17], the
first named author with Drewitz and Marinescu obtained a central limit theorem for
the zeros of square-integrable Gaussian holomorphic sections via Berezin-Toeplitz
quantization on complete Hermitian manifolds. All proofs of these results are based
on the seminal result of Sodin and Tsirelson in [44, Theorem 2.2] for the non-linear
functionals of the Gaussian process (see Theorem 5.6.1).

Note that in Theorem 1.5.2, we need to take the test function ϕ ∈ T 3(L, h). Since ϕ

does not necessarily vanish near �∗, such a kind of test function still allows variables
Yp(ϕ) to contain the contributions of points in �∗.

Shiffman and Zelditch [41, 42] established the framework to compute the asymp-
totics of Var[Yp(ϕ)] on a compact Kähler manifold, in particular, they obtained a
pluri-bipotential for it. Their method can be easily adapted to our setting, so that in
Sect. 5.5, we will prove the following theorem.

Theorem 1.5.3 (Number variance)We assume the same conditions on �, L and E as
in Theorem 1.2.1. Fix any ε ∈ ]0, 1/2] . Let ϕ ∈ T 3(L, h) be such that ∂∂ϕ 
≡ 0, and
let Yp(ϕ) be given as in (1.5.4), then we have the formula for p � 0,

Var[Yp(ϕ)] = ζ(3)

4π2 p

∫

�

|L (ϕ)(z)|2 c1(L, h)(z)+O(p−3/2+ε), (1.5.6)

where

ζ(3) =
∞
∑

k=1

1

k3
∼= 1.202056903159594 . . .

is the Apéry’s constant.

With the same assumptions in Theorem 1.5.2, by (1.3.6), we have

p−1E[Yp(ϕ)] −→ 〈c1(L, hL), ϕ〉 =
∫

�

ϕc1(L, h)

as p → +∞. Therefore, as a consequence of Theorem 1.5.2 and (1.5.6) (also with
Khintchine’s theorem [30, Theorem 1.2.3]), we get the following result.

Corollary 1.5.4 Under the same geometric assumptions of Theorem 1.5.2, and take
ϕ ∈ T 3(L, h) with ∂∂ϕ 
≡ 0, the distributions of the real random variables

√
p
〈[Div(Sp)] − pc1(L, hL), ϕ

〉

, p ∈ N, (1.5.7)

converge weakly to NR(0, σ (U , h, ϕ)) as p→+∞, where

σ(U , h, ϕ) := ζ(3)

4π2

∫

�

|L (ϕ)(z)|2c1(L, h)(z) > 0. (1.5.8)
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2 Semipositive line bundles and spectral gap of Kodaira Laplacian

In this section, we introduce the Dirac operators and Kodaira Laplacians on �.
Following the work of Ma–Marinescu [31], of Auvray–Ma–Marinescu [2], and of
Marinescu–Savale [32], we prove the spectral gaps stated in Theorem 1.2.1. Finally,
we combine this spectral gap with a result of Hsiao and Marinescu [27] to obtain the
leading term of the Bergman kernel functions Bp(x) on �.

2.1 L2-Dolbeault cohomology and Kodaira Laplacian

Let�0,•
c (�, L p⊗E) denote the set of the smooth sections of�•(T ∗(0,1)�)⊗ L p⊗E

on � with compact support, and for s ∈ �
0,•
c (�, L p ⊗ E), the L2-norm of s is given

by

‖s‖2L2 :=
∫

�

|s|2h p
ω�. (2.1.1)

Let�0,•
(2) (�, L p⊗E) be the Hilbert space defined as the completion of (�0,•

c (�, L p⊗
E), ‖ · ‖L2), in particular, L2(�, L p ⊗ E) = �

0,0
(2) (�, L p ⊗ E). As in (1.1.7), let

H0
(2)(X , L p ⊗ E) denote the space of L2-holomorphic sections of L p ⊗ E on �,

which, by (1.1.8), is a finite-dimensional vector space equipped with the L2-inner
product.

We consider the L2-Dolbeault complex,

0→ �
0,0
(2) (�, L p ⊗ E)

∂ p−−−−−→ �
0,1
(2) (�, L p ⊗ E)→ 0, (2.1.2)

where ∂ p is taken to be the maximal extension, that is, with the domain

Dom(∂ p) := {s ∈ �
0,0
(2) (�, L p ⊗ E) : ∂ ps ∈ �

0,1
(2) (�, L p ⊗ E)}. (2.1.3)

Let ∂
∗
p denote the maximal extension of the formal adjoint of ∂ p with respect to the

L2-metrics, then since (�, ω�) is complete, ∂
∗
p coincides with the Hilbert adjoint of

∂ p. Let H
q
(2)(�, L p), q = 0, 1, denote the L2-Dolbeault cohomology groups.

The Dirac operator Dp and the Kodaira Laplacian operator �p are given by

Dp :=
√
2(∂ p + ∂

∗
p),

�p := 1

2
(Dp)

2 = ∂ p∂
∗
p + ∂

∗
p∂ p .

(2.1.4)

Note that �p : �0,•
c (�, L p ⊗ E) −→ �

0,•
c (�, L p ⊗ E) is essentially self-adjoint, so

it has a unique self-adjoint extension which we still denote by �p, the domain of this

extension is Dom(�p) =
{

s ∈ �
0,•
(2) (�, L p ⊗ E) : �p(s) ∈ �

0,•
(2) (�, L p ⊗ E)

}

.
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Note that Dp interchanges and �p preserves the Z-grading of �
0,•
c (�, L p ⊗ E).

Then

�0
p := �p

�0,0(�,L p⊗E)
= ∂

∗
p∂ p ,

�1
p := �p

�0,1(�,L p⊗E)
= ∂ p∂

∗
p .

(2.1.5)

Moreover, the completeness of (�, gT�) infers that, for q = 0, 1,

ker�q
p
∼= Hq

(2)(�, L p ⊗ E). (2.1.6)

For x ∈ �, v ∈ Tx�, by splitting (1.1.1), we write v = v(1,0)+ v(0,1) ∈ T (1,0)
x �⊕

T (0,1)
x �; we denote by v̄(1,0)∗ ∈ T (0,1)∗

x � the metric dual of v(1,0). The Clifford
multiplication endomorphism c : Tx� → End(�•(T ∗(0,1)x �)) is then defined as

v �→ c(v) := √2(v̄(1,0)∗ ∧ −ιv(0,1) ), (2.1.7)

where ι is the contraction operator.
If {e1, e2} is a local orthonormal frame of (T�, gT�), then the Dirac operators in

(2.1.4) can then be written as follows:

Dp =
2
∑

j=1
c(e j )∇�0,•⊗L p⊗E

e j , (2.1.8)

where ∇�0,•⊗L p⊗E denote the Hermitian metric induced by ∇T� and the Chern con-
nections ∇L , ∇E .

Set ω = 1√
2
(e1 − ie2), it forms an orthonormal frame of T (1,0)�. Let ω̄∗ denote

the metric dual of ω. By [31, Theorem 1.4.7], let ��0,•⊗L p⊗E denote the Bochner
Laplacian associated with ∇�0,•⊗L p⊗E , we have the following formula for �p,

�p =1

2
��0,•⊗L p⊗E + r�

4
ω̄∗ ∧ ιω̄ + p

(

RL(ω, ω̄) ω̄∗ ∧ ιω̄ − 1

2
RL(ω, ω̄)

)

+
(

RE (ω, ω̄) ω̄∗ ∧ ιω̄ − 1

2
RE (ω, ω̄)

)

,

(2.1.9)

where r� = 2RT (1,0)�(ω, ω̄) is the scalar curvature of (�, gT�). Note that r� is
a bounded function on � which is constant near punctures. In particular, near the
punctures,

RE (ω, ω̄) ω̄∗ ∧ ιω̄ − 1

2
RE (ω, ω̄) = 0, (2.1.10)

and we have more explicit formula for �p as given in [2, (4.15)].
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2.2 Spectral gap: proof of Theorem 1.2.1

Now we consider the action of �p on �
0,1
c (�, L p ⊗ E). Then since we assume that

iRL is nonnegative, i.e., RL(ω, ω̄) � 0, then, on (0, 1)-forms,

p(RL(ω, ω̄) ω̄∗ ∧ ιω̄ − 1

2
RL(ω, ω̄)) � 1

2
pRL(ω, ω̄) � 0. (2.2.1)

For the points such that RL does not vanish, the above term clearly admits a local
lower bound growing linearly in p.

Under the assumption that RL is semipositive and vanishes up to a finite order, the
arguments from [32, sub-elliptic estimates (2.12) and Proof of Theorem 1] prove that
for a compact subset K ⊂ �, there exist constants C1 > 0, C2 > 0 such that for
p � 1 and for s ∈ �

0,1
c (�, L p ⊗ E) with supp (s) ⊂ K ,

(C1 p
2/ρ� − C2)‖s‖L2 �

∥
∥
∥
1

2
��0,•⊗L p⊗Es

∥
∥
∥L2

. (2.2.2)

We will combine the above considerations to prove Theorem 1.2.1.

Proof of Theorem 1.2.1 For s ∈ �
0,1
c (�, L p ⊗ E) and a domain A ⊂ �, set

‖s‖2A :=
∫

A
|s|2h p

ω� ;

observe that A ⊂ B implies ‖ · ‖A � ‖ · ‖B . We fix a compact subset K of � such that
outside of K we have iRL > cKω� with some constant cK > 0. Then RL can only
vanish at the points in K . Let U ⊂ � be an open relatively compact neighbourhood
of K . Take smooth functions φ1, φ2 : � → [0, 1] such that

supp (φ1) ⊂ U

supp (φ2) ⊂ �\K ,

with φ1 ≡ 1 on K and φ2
1 + φ2

2 ≡ 1 on �. Note that near the punctures, φ2 takes
the constant value 1, then ‖∂φ2‖2C 0 < ∞, where C 0-norm is taken with respect to

gT
∗(0,1)� for a (0, 1)-form on �.
The assumption on (E, hE ) that it is the trivial line bundle near punctures implies

that there exists a constant c0 > 0 such that for x ∈ �, we have

RE (ω, ω̄) ω̄∗ ∧ ιω̄ − 1

2
RE (ω, ω̄) � −c0IdT ∗(0,1)�⊗L p⊗E . (2.2.3)

First, we apply (2.2.2) to the sections with support contained inU . Then by (2.1.9),
(2.2.1), (2.2.3) and using the same arguments as in [32, Proposition 14], we get that
there exist constant c1, c2 ∈ R>0 such that for s ∈ �

0,1
c (�, L p ⊗ E),

(c1 p
2/ρ� − c2)‖φ1s‖2U � ‖∂∗p(φ1s)‖2U . (2.2.4)
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On the other hand, since iRL(ω, ω̄) > cKω� on the support of φ2, then by (2.2.3)
and [31, Theorem 6.1.1, (6.1.7)], there exists a constant c3 > 0, such that for suffi-
ciently large p ∈ N

c3 p‖φ2s‖2�\K � ‖∂∗p(φ2s)‖2�\K . (2.2.5)

Let∇�0,•⊗L p⊗E be the connection on�•(T ∗(0,1)�)⊗L p⊗E that is induced by the
holomorphic Hermitian connection ∇T (1,0)� and ∇L p⊗E , and let 0 
= w ∈ T (1,0)� be
a local unit frame, defined on some open set V . Because � is Kähler, by [31, Lemma

1.4.4], we have locally ∂
∗
p = −ιw̄∇�0,•⊗L p⊗E

w̄ for p ∈ N. As a consequence,

‖∂∗p(φ1s)‖2U � ‖∂φ j‖2C 0 · ‖s‖2L2 + ‖φ1∂
∗
ps‖2L2 ,

‖∂∗p(φ2s)‖2�\K � ‖∂φ j‖2C 0 · ‖s‖2L2 + ‖φ2∂
∗
ps‖2L2 .

(2.2.6)

Combining (2.2.4) - (2.2.6), for sufficiently large p ∈ N,

(

min
{

c1 p
2/ρ� − c2, c3 p

}− ‖∂φ1‖2C 0 − ‖∂φ2‖2C 0

)

‖s‖2L2 � ‖Dps‖2L2 .

(2.2.7)

Since ρ� � 2, the above inequality infers that there exist constants C1 > 0, C2 > 0
such that for p ∈ N,

‖Dps‖2L2 � 2(C1 p
2/ρ� − C2)‖s‖2L2 . (2.2.8)

This proves (1.2.1).
Observe that Spec(�p) = Spec(�0

p) ∪ Spec(�1
p) ⊂ R�0. For s ∈ �

0,1
c (�, L p ⊗

E),

‖Dps‖2L2 = 2〈�ps, s〉. (2.2.9)

Thenwe get Spec(�1
p) ⊂ [C1 p2/ρ�−C2,+∞[, and H1

(2)(�, L p⊗E) = 0 for p � 0.

Now take s ∈ �
(0,0)
c (�, L p ⊗ E), applying (1.2.1) to ∂ ps gives

‖�0
ps‖2L2 � (C1 p

2/ρ� − C2)〈�0
ps, s〉. (2.2.10)

As a consequence, Spec(�0
p) ⊂ {0} ∪

[

C1 p2/ρ� − C2,+∞
[

, so that we get (1.2.2).
This completes the proof of our theorem. ��

2.3 Leading term of Bergman kernel function: a result of Hsiao–Marinescu

For an arbitrary holomorphic line bundle on a Hermitian manifold, Hsiao and Mari-
nescu [27] studied the asymptotic expansions of kernel functions of the spectral
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projections for the low-energy forms. In particular, they refined and generalized the
local holomorphic Morse inequalities by Berman [7].

Generally speaking, fix k0 � 3, Hsiao and Marinescu considered the spectral pro-
jection P[0,p−k0 ] fromL2(�, L p⊗ E) onto the spectral space of the Kodaira Lapacian

�p associated with the interval [0, p−k0 ]. Similarly to the Bergman kernel function,
let P[0,p−k0 ](x) denote the corresponding spectral kernel function. In [27, Theorem 1.3
and Corollary 1.4], Hsiao andMarinescu obtained a local holomorphicMorse inequal-
ity for P[0,p−k0 ](x) as p→+∞. In particular, the leading term in the expansion was
computed.

In the present paper, the spectral gap (1.2.2) implies that for p � 1, we have

P[0,p−k0 ] = Bp, P[0,p−k0 ](x) = Bp(x), x ∈ �. (2.3.1)

Then [27, Theorem 1.3 and Corollary 1.4] applies to Bp(x). Note that their results are
stated for the sections of L p, but by [27, Remark 1.11-(II)], these conclusions also
hold true for L p ⊗ E in our case.

Theorem 2.3.1 (Hsiao and Marinescu [27, Corollary 1.4]) We assume the same con-
ditions on �, L and E as in Theorem 1.2.1. Recall that the function c(x) on � is
defined in (1.2.6). Then

(i) Let 1�2 denote the characteristic function of the open subset �2 ⊂ �. For any
x ∈ �, we have

lim
p→+∞

1

p
Bp(x) = 1�2(x)

c(x)
2π

. (2.3.2)

(ii) Let K be a compact subset of � and take ε > 0, then there exists p0 ∈ N such
that for any p � p0, we have for x ∈ K,

Bp(x) �
(

ε + 1�2(x)
c(x)
2π

)

p. (2.3.3)

It is clear that we can recover the pointwise convergence (2.3.2) from our Theorem
1.2.2. Moreover, the results stated in Corollary 1.2.3 and Proposition 1.2.4 extend the
upper bound in (2.3.3) for our punctured Riemann surface.

3 Bergman kernel near the punctures

In this section,we begin to explain the technique of analytic localization to compute the
Bergman kernel Bp(z, z′), where the spectral gap in Theorem 1.2.1 plays an essential
role. Subsequently, we obtain global off-diagonal estimates for Bp(z, z′). Thenwewill
apply the work of Auvray, Ma, and Marinescu [1–3] to get the asymptotic expansion
of the Bergman kernel function Bp(z)when z is near the punctures. The near-diagonal
expansion of Bp and the proof of Theorem 1.2.2 will be given in the next section.
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We introduce the following notation. For m ∈ N and s ∈ C∞(�, L p ⊗ E), z ∈ �,
set

|s|C m (h p)(z) :=
(|s|h p + |∇ p,�s|h p,ω� + . . .+ |(∇ p,�)ms|h p,ω�

)

(z), (3.0.1)

where∇ p,� is the connection on (T�)⊗�⊗L p⊗E , for every � ∈ Z�0, induced by the
Levi-Civita connection associated to ω� and the Chern connection that corresponds
to the metric h p, and | · |h p,ω� denotes the Hermitian metric on (T�)⊗� ⊗ L p ⊗ E
induced by gT� and h p. Then for any subset U ⊂ �, define the norm ‖ · ‖C m (U ,h p)

on U as follows,

‖s‖C m (U ,h p) := sup
z∈U
|s|C m (h p)(z). (3.0.2)

If U = �, we write simply ‖s‖C m (h p) := ‖s‖C m (�,h p). Similarly, we also define the
analogue norms for the sections on D

∗, � ×�, etc.
For k � 1, let Hk(�, ω�, L p ⊗ E, h p) denote the Sobolev space of sections of

(L p ⊗ E, h p) that are L2-integrable up to order k. For s ∈ Hk(�, ω�, L p ⊗ E, h p),
set

‖s‖2Hk
p
:=
∫

�

(

|s|2h p
(z)+

∣
∣
∣∇ p,�s

∣
∣
∣

2

h p,ω�

(z)+ · · ·+
∣
∣
∣(∇ p,�)ks

∣
∣
∣

2

h p,ω�

(z)

)

ω�(z)<∞.

(3.0.3)

3.1 Localization of the problem and off-diagonal estimates

In this subsection, we explain how to localize the computations for the Bergman kernel
Bp on � by the technique of analytic localization. For this method, we need two key
ingredients: the first one is the spectral gap, which is already given by Theorem 1.2.1
for our case; the second is the elliptic estimates for �0

p as p grows (cf. [31, Lemma
1.6.2]), it is clear by the definition of �0

p that they hold true on any compact subsets
of �. Due to the seminal work of Auvray, Ma and Marinescu [1, 2], the necessary
elliptic estimates for �0

p near the punctures were also established. Finally, using the
finite propagation speed for wave operators, we can localize the computations of
Bp(z, z′) in our case to the problems well considered in [1, 2] (for computations near
punctures) and in [31], [32, 33] (for computations away from punctures).

Now we give more details. We start with an elliptic estimate proved in [2, Propo-
sition 4.2]. Note that in [2], they take (E, hE ) to be a trivial line bundle on � and
assume that (L, h) is uniformly (strictly) positive on �, but with the same model near
punctures on�, neither the twist by E nor the positivity of (L, h) away from punctures
play any role in the proof of this estimate, so that it extends easily to our case.
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Proposition 3.1.1 ([2, Proposition 4.2]) For any k ∈ N
∗, there exists C = C(k, h)

such that for p � 1 and all s ∈ H2k(�, ω�, L p ⊗ E, h p),

‖s‖2H2k
p

� C
k
∑

j=0
p4(k− j)‖(�0

p)
j s‖2L2 (3.1.1)

Fix a small ε > 0. Let ψ : R → [0, 1] be a smooth even function such that

ψ(v) =
{

1 , |v| � ε/2

0 , |v| � ε
, (3.1.2)

and define

ϕ(a) =
(∫ ∞

−∞
ψ(v)dv

)−1
·
∫ ∞

−∞
eivaψ(v)dv

which is an even function with ϕ(0) = 1 and lies in the Schwartz space S(R).
For p > 0, set ϕp(s) := 1[ 12

√
C1 p1/ρ� ,∞[ (|s|)ϕ(s), where C1 is the constant in the

spectral gap of Theorem 1.2.1.
Note that ϕ and ϕp are even functions. We consider the bounded linear operators

ϕ(Dp), ϕp(Dp) acting onL0,0
2 (�, L p⊗ E) defined via the functional calculus of�0

p.
In particular, we have

ϕ(Dp) = 1

2π

∫

R

cos
(

ξ

√

�0
p

)

ϕ̂(ξ)dξ , (3.1.3)

where ϕ̂ denotes the Fourier transform of ϕ and is a multiple of the functionψ defined
in (3.1.2). Then for p � 0 with C1 p2/ρ� − C2 � C1

4 p2/ρ� , we have

ϕ(Dp)− Bp = ϕp(Dp). (3.1.4)

Let ϕp(Dp)(z, z′) denote the Schwartz integral kernel of ϕp(Dp), which is clearly
smooth on �×�. We have the following estimates as an extension of [2, Proposition
5.3]. Fix 0 < r < e−1, recall that the smooth function η : � −→ [1, ∞[ is such that
η(z) = | log |z|2| for z ∈ D

∗
r near each punctures.

Proposition 3.1.2 For �, m � 0, γ > 1
2 , there exists C�,m,γ > 0 such that for any

p > 1, we have

∥
∥η(z)−γ η(z′)−γ ϕp(Dp)(z, z

′)
∥
∥
C m (h p)

� C�,m,γ p
−�. (3.1.5)

Proof Note that ϕ(s) when is a Schwartz function on R, then for any k ∈ N, there
exists Mk > 0 such that for s ∈ R,

|skϕ(s)| � Mk . (3.1.6)
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Then

|ϕp(s)| � Mk

(
4

C1

)k/2

p−k/ρ� . (3.1.7)

Combining (3.1.7) with the estimate (3.1.1) and the definition of ϕp(Dp), we conclude
that for any k, � ∈ N, there exists Ck,� > 0 such that for s ∈ L0,0

2 (�, L p ⊗ E),

‖ϕp(Dp)s‖Hk
p

� Ck,� p
−�‖s‖L2 . (3.1.8)

Using the above inequality, the proof of (3.1.5) follows from the same arguments
given in the proof of [2, Proposition 5.3], which also need the Sobolev embeddings
[2, Lemma 2.6] for the sections on � and � ×�. ��

Now Proposition 1.2.5 is a consequence of Proposition 3.1.2.

Proof of Proposition 1.2.5 We take ε in (3.1.2) the same as fixed one in Proposition
1.2.5. By (2.1.9), the second order term of �0

p is 1
2�

�0,•⊗L p⊗E . Thus by the finite
propagation speed for thewave operators (cf. [31,AppendixTheoremD.2.1]) in (3.1.3)
and our assumptions on ψ in (3.1.2), we get that for z ∈ �, the support of ϕ(Dp)(z, ·)
is included in B

�(z, ε√
2
), and ϕ(Dp)(z, ·) depends only on the restriction of �0

p on

B
�(z, ε√

2
). In particular, if z, z′ ∈ � are such that d(z, z′) � ε, then

ϕ(Dp)(z, z
′) = 0, (3.1.9)

so that (1.2.12) follows from (3.1.4) and (3.1.5). This completes our proof. ��

3.2 Bergman kernel for Poincaré punctured unit disc

The Bergman kernel for Poincaré punctured unit disc is our model for the Bergman
kernel Bp near the punctures of �, which is also a central object studied by Auvray–
Ma–Marinescu in [1, 2]. Now we recall the main results proved in [2, Section 3].

We consider the Poincaré punctured unit disc as follows,

(D∗, ωD∗ , C, hD∗) ,

where hD∗ = | log(|z|2)|hC0 with hC0 the flat Hermitian metric on the trivial line bundle
C → D

∗. Let z ∈ D
∗ denote the natural coordinate.

For p ∈ N
∗, consider the Hermitian metric h p,D∗ := | log(|z|2)|phC0 on C. Define

H p
(2)(D

∗) := H0
(2)(D

∗, ωD∗ , C, h p,D∗), (3.2.1)

to be the space of L2-integrable holomorphic functions on D
∗ (with respect to the

Hermitian metric h p,D∗ ). We denote by BD
∗

p the corresponding Bergman kernel.
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By [2, Lemma 3.1], for p � 2, a canonical orthonormal basis of H p
(2)(D

∗) is given
as follows

{(
�p−1

2π(p − 2)!
)1/2

z� : � ∈ N
∗
}

. (3.2.2)

Then for p � 2, z, z′ ∈ D
∗, we have

BD
∗

p (z, z′) =
∣
∣log(|z′|2)∣∣p
2π(p − 2)!

∞
∑

�=1
�p−1z� z̄′�. (3.2.3)

Then the Bergman kernel function has the formula as follows

BD
∗

p (z) =
∣
∣log(|z|2)∣∣p
2π(p − 2)!

∞
∑

�=1
�p−1|z|2�. (3.2.4)

More explicit evaluations are worked out in [2, Section 3] for the right-hand side
of (3.2.4). In [2, Proposition 3.3], they proved that for any 0 < a < 1 and any m � 0,
there exists c = c(a) > 0 such that

∥
∥
∥
∥
BD

∗
p (z)− p − 1

2π

∥
∥
∥
∥
C m ({a�|z|<1},ωD∗ )

= O(e−cp), as p→+∞. (3.2.5)

More generally, for 0 < a < 1 and 0 < γ < 1
2 , there exists c = c(a, γ ) > 0 such

that

∥
∥
∥
∥
BD

∗
p (z)− p − 1

2π

∥
∥
∥
∥
C m ({ae−pγ �|z|<1},ωD∗ )

= O(e−cp1−2γ ), as p→∞. (3.2.6)

Another seminal result proved by Auvray, Ma and Marinescu is the supremum
value of BD

∗
p (z). In [2, Corollary 3.6], they proved that

sup
z∈D∗

BD
∗

p (z) =
( p

2π

)3/ 2 +O(p). (3.2.7)

Their calculations also showed that the points z where BD
∗

p (z) approaches its supre-
mum have exponentially small norm |z| as p→∞.

3.3 Bergman kernel expansions near a puncture

Now we consider the chart Vj described in our assumption (β). Fix 0 < r < e−1; we
view D

∗
r as a subset of Vj with the local complex coordinate z j on Vj . Then we have
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the identification of geometric data

(Vj , ω�, L p ⊗ E, h p)|D∗r ∼= (D∗, ωD∗ , C, h p,D∗)|D∗r , (3.3.1)

where the right-hand side is the Poincaré punctured unit disc described in Sect. 3.2.
Let �0

D∗,p denote the Kodaira Laplacian operator for the Poincaré punctured unit

disc acting on L0,0
2 (D∗, ωD∗ , C, h p,D∗). Then restricting to D

∗
r , �0

D∗,p coincides with

operator �0
p.

Note that by [2, Corollary 5.2], �0
D∗,p has a spectral gap, i.e. there exists C ′ > 0

such that for p � 0,

Spec(�0
D∗,p) ⊂ {0} ∩ [C ′ p,+∞[. (3.3.2)

Then for �0
D∗,p, we can proceed as in Sect. 3.1. More precisely, fix 0 < ε < r

2 to
define ψ in (3.1.2) and the corresponding function ϕ. Then for p � 1,

ϕ(DD∗,p)− BD
∗

p = ϕp(DD∗,p). (3.3.3)

By the finite propagation speed, as explained in the proof of Proposition 3.1.2, for
z, z′ ∈ D

∗
r/2, we have

ϕ(DD∗,p)(z, z
′) = ϕ(Dp)(z, z

′). (3.3.4)

Therefore, on D
∗
r/2 × D

∗
r/2, we have

Bp(z, z
′)− BD

∗
p (z, z′) = ϕp(DD∗,p)(z, z

′)− ϕp(Dp)(z, z
′). (3.3.5)

Note that, in fact, both terms in the right-hand side of (3.3.5) satisfy the estimate (3.1.5)
on D

∗
r/2 × D

∗
r/2. Then we can proceed as in [2, Section 6] since the computations are

local, we see that the results of [2, Theorems 1.1 & 1.2] still holds in our setting.

Theorem 3.3.1 ([2, Theorems 1.1 & 1.2]) Fix any �,m ∈ N�0. For any α > 0, there
exists a constant C = C(�,m, α) > 0 such that on D

∗
r/2 × D

∗
r/2

∣
∣
∣Bp(z, z

′)− BD
∗

p (z, z′)
∣
∣
∣
C m

� Cp−�
∣
∣
∣log(|z|2)

∣
∣
∣

−α ∣∣
∣log(|z′|2)

∣
∣
∣

−α

. (3.3.6)

Moreover, for every δ > 0, there exists a constant C ′ = C ′(�,m, δ) > 0, such that for
all p ∈ Z>0 and z j ∈ D

∗
r/2 ,

∣
∣
∣Bp − BD

∗
p

∣
∣
∣
C m

(z j ) � C ′ p−�
∣
∣
∣log(|z j |2)

∣
∣
∣

−δ

. (3.3.7)

The behavior of BD
∗

p has been described in Sect. 3.2, combining with the above
theorem, we get the asymptotic expansion of Bp on D

∗
r/2 as p→+∞.
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Remark 3.3.2 Due to the spectral gap (1.2.2) and the considerations outlined above,
the uniform convergence of the quotient Bp(x)/BD

∗
p (x) to one near the punctures (see

[3, Theorems 1.2 & 1.3]) follows directly from the same arguments as in [3].

4 Bergman kernel expansion on 6 for semipositive line bundles

In addition to the off-diagonal estimates in Proposition 1.2.5, we continue to study the
near-diagonal expansion of Bp via the local models that will be described explicitly in
Sect. 4.1. Then we can proceed as in [31, Sections 4.1 & 4.2] to conclude the desired
expansions. Finally, we will give the proofs of Theorem 1.2.2, Corollary 1.2.3, and
Proposition 1.2.4.

4.1 Model Dirac and Kodaira Laplacian operators onC

Alongside the Kodaira Laplacians of our interest, we need to introduce certain model
operators which play an important role in our calculations. We always equip R

2 with
the standard Euclidean metric and the standard complex structure such that R

2 ∼= C.
Let z = x+ iy ∈ C denote the usual complex coordinate, and let {e1 := ∂

∂x , e2 = ∂
∂ y }

be the standard Euclidean basis of R
2. Now fix an even integer ρ′ � 2.

Let R be a non-trivial (1, 1)-form onR
2 whose coefficient with respect to the frame

dz ∧ dz̄ is given by a real nonnegative homogeneous polynomial of degree ρ′ − 2.
We define a smooth 1-form aR ∈ �1(R2) by

aR
v1

(v2) :=
∫ 1

0
Rtv1(v2, tv1)dt , (4.1.1)

where v1 ∈ R
2 and v2 ∈ Tv1R

2 ∼= R
2. Set

∇R = d − aR , (4.1.2)

it is a unitary connection on the trivial Hermitian line bundle C over R
2. In particular,

the curvature form of ∇R is exactly given by R. Let �R denote the corresponding
Bochner Laplacian.

Take ∂ to be the standard ∂-operator on R
2 ∼= C; then the (0, 1) part of the connec-

tion ∇R is ∂C := ∂ − (aR
)0,1

. Let ∂
∗
C
denote the formal adjoint of ∂C with respect to

the standard inner product on R
2.

The following operators are called the model Dirac operator and model Kodaira
Laplacian on R

2, corresponding to R:

DR :=
√
2
(

∂C + ∂
∗
C

)

, �R := 1

2
(DR)2 . (4.1.3)



Semipositive line bundles on punctured Riemann surfaces… Page 27 of 61    38 

This model Kodaira Laplacian �R is related to the model Bochner Laplacian by the
Lichnerowicz formula

�R = 1

2
�R + 1

2
c (R) (4.1.4)

with c (R) = R(e1, e2)c(e1)c(e2). We always identify �R and �R with their unique
self-adjoint extensions that act on the L2-sections over R

2.
Recall that �0

R denotes the restriction of �R on (0, 0)-sections. In [32, Proposition
18 in Appendix], it was proved that there exists a constant cR > 0 such that

Spec(�0
R) ⊂ {0} ∪ [cR,+∞[. (4.1.5)

Consider the following first-order differential operators

b = −2 ∂

∂z
+ 1

ρ′
iR(e1, e2)z̄, b+ = 2

∂

∂ z̄
+ 1

ρ′
iR(e1, e2)z. (4.1.6)

Then we have

�0
R =

1

2
bb+. (4.1.7)

Moreover, for s ∈ L0,0
2 (R2, C), s ∈ ker�0

R if and only if b+s ≡ 0.
Consider the L2-orthogonal projection

BR : L0,0
2 (R2, C) −→ ker�0

R . (4.1.8)

Let BR(z, z′), z, z′ ∈ R
2 denote the Schwartz integral kernel of the above projection,

which is a smooth function on R
2 × R

2. We also set

BR(z) = BR(z, z). (4.1.9)

The following lemma was already known in [32, the text above Proposition 19],
which can also be viewed as a consequence of the lower bound for the Bergman kernel
proved by Catlin [12] by considering the local models. Here we also give a direct proof
to shed light on the space ker�0

R .

Lemma 4.1.1 For a nontrivial semipositive R as above, BR is an even function, i.e. ,
for z, z′ ∈ R

2 we have BR(z, z′) = BR(−z,−z′). Moreover,

BR(0) > 0, (4.1.10)

and the quantity BR(0) depends on R smoothly (with R having the coefficients as
above of a given degree ρ′ − 2).
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Proof Set ω = 1√
2
(e1 − ie2). Note that

ψ(x, y) := R(ω, ω) = iR(e1, e2) (4.1.11)

is, by our assumption, a real homogeneous nonnegative polynomial in x, y of degree
ρ′ − 2. In particular, it is an even function in (x, y) ∈ R

2. So that we get the even
parity for BR by our construction.

Let �(x, y) be a homogeneous polynomial in x, y of degree ρ′ such that

∂�

∂ z̄
(x, y) = 1

ρ′
ψ(x, y)z. (4.1.12)

Note that for any fixed λ ∈ C, � + λzρ
′
also satisfies the above equation. Moreover,

we have

− 1

2
�R

2�(�) = ψ(x, y) � 0, (4.1.13)

where�R
2 = −( ∂2

∂x2
+ ∂2

∂ y2
). The real part ϕ := �(�) is a subharmonic, non-harmonic

real homogeneous polynomial in x, y of degree ρ′.
A straightforward observation is as follows: if g is an entire function on C such that

|g|2e−ϕ is integrable on C (with respect to the standard Lebesgue measure), then

ge−
1
2� ∈ ker�0

R . (4.1.14)

This way, we change our problem to study the weighted Bergman kernel on C

associated to the real subharmonic function 1
2ϕ as in [13]. By [13, Proposition 1.10],

ker�0
R is an infinite dimensional subspace of L0,0

2 (R2, C). In particular, there exists a

nontrivial entire function g on C such that ge− 1
2� ∈ ker�0

R . If g(0) 
= 0, then ge− 1
2�

does not vanish at z = 0. If g(0) = 0, we write g(z) = zk f (z), where k ∈ N
∗, f

is also an entire function with f (0) 
= 0. Then the integrability of |g|2e−ϕ implies

that of | f |2e−ϕ , so that f e− 1
2� ∈ ker�0

R and it does not vanish at point z = 0. As a
consequence, we have

BR(0) = BR(0, 0) > 0 (4.1.15)

by the variational characterization of the Bergman kernel.
Analogously to [31, (4.2.22)], by the spectral gap (4.1.5), for t > 0, we have

exp(−t�0
R)− BR =

∫ ∞

t
�0

R exp(−s�0
R)ds. (4.1.16)

Then

BR(0, 0) = exp(−t�0
R)(0, 0)−

∫ ∞

t
{�0

R exp(−s�0
R)}(0, 0)ds. (4.1.17)
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Now we replace R by a smooth family of non-trivial (1, 1)-forms on R
2 whose coeffi-

cients with respect to dz∧dz̄ are given by nonnegative real homogeneous polynomials
in x, y of degree ρ′ − 2. Then locally in the parametrization space for this fam-
ily R, the spectral gaps cR in (4.1.5), as R varies, admit a uniform lower bound
c > 0 (see [32, Appendix: Proposition 18]). Combining with the smooth depen-
dence of the heat kernels of �0

R on R (see Duhamel’s formula [6, Theorem 2.48]),
∫∞
t {�0

R exp(−s�0
R)}(0, 0)ds depends continuously on R for any given t > 0. As a

consequence of (4.1.17), we conclude that BR(0, 0) depends smoothly on R. This
way, we complete our proof of the lemma. ��
Example 4.1.2 We consider a simple but nontrivial example R(x, y) = y2dz ∧ dz̄,
ρ′ = 4, then we can rewrite it as

R(x, y) = −2iy2dx ∧ dy. (4.1.18)

Then

aR
z :=

∫ 1

0
t3(2iy2xdy − 2iy3dx)dt = i

2
y2(xdy − ydx), (4.1.19)

and

(aR)0,1z = −1

4
y2zdz̄. (4.1.20)

An explicit computation shows that ∂
∗
C
= −2ι ∂

∂ z̄

∂
∂z + 1

2 y
2 z̄ι ∂

∂ z̄
, and that

�R =1

2
�R

2 − 1

2
y2
(

z
∂

∂z
− z̄

∂

∂ z̄

)

+ i
2
xy

+ 1

8
y4|z|2 − y2 + 2y2dz̄ ∧ ι ∂

∂ z̄
.

(4.1.21)

Note that the differential operator

− 1

2
y2
(

z
∂

∂z
− z̄

∂

∂ z̄

)

+ i
2
xy = i

2
y2
(

y
∂

∂x
− x

∂

∂ y

)

+ i
2
xy (4.1.22)

is formally self-adjoint with respect to the standard L2-metric on the functions over
R
2.
In this example, we have

b = −2 ∂

∂z
+ 1

2
y2 z̄, b+ = 2

∂

∂ z̄
+ 1

2
y2z. (4.1.23)

Then

�0
R =

1

2
bb+. (4.1.24)
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Note that

�
{

|z|4 − |z|2z2 − 1

3
|z|2 z̄2 + 1

2
z4
}

� 1

24
x4 + 1

6
y4. (4.1.25)

Consider the following L2-function on C

f (z) = exp

{

− 1

16

(

|z|4 − |z|2z2 − 1

3
|z|2 z̄2 + 1

2
z4
)}

. (4.1.26)

We have f (0) = 1, and f ∈ ker�0
R . Moreover, we have

BR(0) � 1

‖ f ‖L2
. (4.1.27)

4.2 Construction of local models

This subsection is a continuation of Sect. 3.1 on the technique of analytical localization,
and we will use the same notation as introduced in Sect. 3.1. In order to compute the
asymptotic expansion of Bp(z) as p → +∞, we need to construct a model Kodaira
Laplacian associatedwith the local geometry near z. Themachinery of the construction
was explained in detail in [31, Sections 1.6 & 4.1], and for a compact Riemann surface
equipped with a semipositive line bundle, Marinescu and Savale already used this
construction in [32, 33]. In the sequel, we will give more details in order to work out
more explicitly the near-diagonal expansions of Bp.

Note that (�, gT�) is complete and hence by theHopf-Rinow theoremgeodesically
complete. Thus the exponential map

Tz� 	 Z �→ exp�
z (Z) ∈ �

is well-defined for all z ∈ �. For an open subset U ⊂ �, set

injU := inf
z∈U sup{ε > 0 : expUz is a diffeomorphism of

B
Tz�(0, ε) onto its image in U },

(4.2.1)

which is called the injectivity radius of U . If U contains any punctures, we always
have injU = 0 since the injective radius of a point z ∈ U goes to 0 as z approaches
any puncture in U . If U is relatively compact in �, then injU > 0.

Fix a point z0 ∈ � and fix an open neighborhood U0 ⊂ � of z0 that is relatively
compact in �. Hence injU0 > 0. Let {e1, e2}, {e}, and {f} be orthonormal bases for
Tz0�, Ez0 and Lz0 respectively, and let {w = 1√

2
(e1 − ie2)} be an orthonormal basis

for T (1,0)
z0 �. Fix some ε < injU0 /4 such that the vanishing order of RL on B

�(z0, 4ε)
is at most ρz0 −2. Since ε does not exceed the injectivity radius ofU0, the exponential
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map

Tz0� ⊃ B
Tz0�(0, 4ε) 	 Z �→ exp�

z0(Z) ∈ B
�(z0, 4ε) ⊂ � (4.2.2)

is a diffeomorphism of open balls; it yields a local chart via

R
2 	 (Z1, Z2) �−→ Z1e1 + Z2e2 ∈ Tz0� , (4.2.3)

called the normal coordinate system (centered at z0).
We always identifyB

Tz0�(0, 4ε)withB
�(z0, 4ε) via (4.2.2). For Z ∈ B

Tz0�(0, 4ε)
we identify LZ , EZ and �•(T ∗(0,1)Z �) to Lz0 , Ez0 and �•(T ∗(0,1)z0 �), respectively, by

parallel transport with respect to ∇L ,∇E and ∇�•(T ∗(0,1)�) along γZ : [0, 1] 	 u �→
exp�

z0(uZ). Thisway,we trivilize the bundles L , E ,�•(T ∗(0,1)�) near z0. In particular,
we will still denote by {e1, e2}, {e}, and {f} the respective orthonormal smooth frames
of the vector bundles on point Z , defined as the parallel transports as above of the
vectors {e1, e2}, {e}, and {f} from z0.

With the above local trivializations,wewrite the connection∇�0,•⊗L p⊗E as follows

∇�0,•⊗L p⊗E = d −
(

a�0,• + paL + aE
)

(4.2.4)

where d denotes the ordinary differential operator, and a�0,•
, aE , aL are respectively

the local connection 1-forms of ∇�0,•
,∇E ,∇L in this trivialization. Note that these

connection 1-forms are purely imaginary.
In coordinate (Z1, Z2), we write

aL =
2
∑

i=1
aLi dZi . (4.2.5)

Let RL
i j denote the coefficients of the curvature form RL with respect to the frame

dZi ∧ dZ j , i, j = 1, 2. We have

RL
11 = RL

22 ≡ 0, RL
12 = −RL

21. (4.2.6)

Then we can write

RL
Z = RL

12,Z dZ1 ∧ dZ2. (4.2.7)

Similarly, we define R�0,•
i j,Z and RE

i j,Z . Moreover, we have the following relations for

Z ∈ BTz0�(0, ε)

aLi,Z =
2
∑

j=1

∫ 1

0
t Z j RL

i j,t Z dt . (4.2.8)
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The analogous identities also hold for a�0,•
, aE .

On the other hand, in these normal coordinates, we find that the curvature RL of
∇L has the following Taylor expansion at the origin

RL
Z =

∑

|α|=ρz0−2
RL
12;αZ

αdZ1 ∧ dZ2 +O(|Z |ρz0−1) =: RL
0,Z +O(|Z |ρz0−1),

(4.2.9)

where the (dZ1 ∧ dZ2)-coefficient of RL
0 is the product of −i and a positive homoge-

neous even polynomial of order ρz0 − 2 in Z .
Now we construct the local model for Bp at z0. Set �0 := Tz0� ∼= R

2, and let
Z = (Z1, Z2) denote the natural coordinate on �0. Let (L0, h0), (E0, hE0) denote
the trivial line bundles on �0 given by (Lz0 , hz0), (Ez0 , h

E
z0) respectively. We equip

�0 with J0 the almost complex structure on �0 that coincides with the pullback of the
complex structure J on� by the map (4.2.2) inB

�(z0, 2ε), and is equal to Jz0 outside
B

�(z0, 4ε). Meanwhile, let gT�0 be the Riemannian metric on �0 that is compatible
with J0 and that coincides with the Riemannian metric gT� onB

�(z0, 2ε), and equals
to gT�

z0 outside B
�(z0, 4ε). In fact, J0 is integrable, and the triplet (�0, J0, gT�0)

becomes a Riemann surface equipped with a complete Kähler metric ω�0 induced by
gT�0 .

Let T ∗(0,1)�0 denote the anti-holomorphic cotangent bundle of (�0, J0), and
let ∇̃�0,•

denote the Hermitian connection on �•(T ∗(0,1)�0) associated with
the Levi-Civita connection of (T�0, gT�0). Note that on B

Tz0�(0, 2ε), the pair
(�•(T ∗(0,1)�0), ∇̃�0,•

) coincides with (�•(T ∗(0,1)�),∇�•(T ∗(0,1)�)) via the identifi-
cation (4.2.2), and outside B

Tz0�(0, 4ε), the connection ∇̃�0,•
is given by the trivial

connection on the trivial bundle �•(T ∗(0,1)z0 �). We can always trivialize T ∗(0,1)�0
by the parallel transport along the geodesic rays starting at 0, so that for Z ∈ �0,
T ∗(0,1)Z �0 ∼= T ∗(0,1)z0 �.

Fix an even smooth function χ ∈ C∞(R, [0, 1]) with χ = 1 on [−2, 2] and
suppχ ⊂ [−4, 4]. We defined a nonnegative curvature form as follows, for Z ∈ �0,

R̃L0
Z := χ

( |Z |
ε

)

RL
Z +

(

1− χ

( |Z |
ε

))

RL
0,Z , (4.2.10)

where RL
0 is defined in (4.2.9). On �0, define a 1-form

ãL0 =
2
∑

i=1
ãL0
i dZi , ãL0

i (Z) :=
∫ 1

0
t Z j R̃L0

i j,t Z dt . (4.2.11)

Then we set

∇̃E0 = d − χ

( |Z |
ε

)

aE ,

∇̃L0 = d − ãL0 .

(4.2.12)
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They are Hermitian connections on the line bundle L0, E0 respectively. Moreover, the
curvature form of ∇̃L0 is exactly R̃L0 .

As in (1.1.4), we define for Z ∈ �0,

ρ̃Z := 2+ ordZ (R̃L0) . (4.2.13)

Since both the vanishing order of RL on B
�(z0, 4ε) and the vanishing order RL

0 on
�0 are at most ρz0 − 2, we get

ρ̃Z � ρz0 . (4.2.14)

In particular, ρ̃0 = ρz0 , and if R̃L0(Z) 
= 0, we have ρ̃Z = 2.
Under the above setting on �0, we can define the corresponding Dirac and Kodaira

Laplacian operators. Note that we can use the formulae in (4.1.3), or equivalently we
use the connections ∇̃�0,•

, ∇̃L0 , ∇̃E0 to define the Dirac operator D̃p by (2.1.8). Then
we have the operators

D̃p : �0,•
c (�0, L

p
0 ⊗ E0) −→ �0,•

c (�0, L
p
0 ⊗ E0) ,

�̃p := 1

2
(D̃p)

2 : �0,•
c (�0, L

p
0 ⊗ E0) −→ �0,•

c (�0, L
p
0 ⊗ E0) .

(4.2.15)

They extend uniquely to self-adjoint operators acting onL2-sections over�0. By con-
struction, the differential operators D̃p and �̃p coincide with Dp and �p respectively
on B

Tz0�(0, 2ε) ∼= B
�(z0, 2ε).

Let �̃�0,•⊗L p
0⊗E0 be the Bochner Laplacian associated to the connection

∇̃�0,•⊗L p
0⊗E0 . Analogous to (2.1.9), we have

�̃p = 1

2
�̃�0,•⊗L p

0⊗E0 + r�0

4
ω̄∗ ∧ ιω̄

+ p

(

R̃L0(ω, ω̄) ω̄∗ ∧ ιω̄ − 1

2
R̃L0(ω, ω̄)

)

+
(

R̃E0(ω, ω̄) ω̄∗ ∧ ιω̄ − 1

2
R̃E0(ω, ω̄)

)

,

(4.2.16)

where ω denote a unit frame of T ∗(1,0)�0, the function r�0 is the scalar curvature of
(�0, gT�0), and R̃E0 is the curvature form of ∇̃E0 . Furthermore, r�0 , RE0 vanishes
identically outside B

Tz0�(0, 4ε).
By (4.2.16), �̃p preserves the degree of �•(T ∗(0,1)�). For j = 0, 1, let �̃ j

p denote

the restriction of �̃p on �
0, j
(2) (�0, L

p
0 ⊗ E0). By the same sub-elliptic estimate proved

in [32, (4.13)] for �̃�0,•⊗L p
0⊗E0 as an analogue of (2.2.2), we get that there exist

constants C ′1, C ′2 > 0, such that

Spec(�̃0
p) ⊂ {0} ∪

[

C ′1 p2/ρz0 − C ′2,+∞
[

,

Spec(�̃1
p) ⊂

[

C ′1 p2/ρz0 − C ′2,+∞
[

.
(4.2.17)
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Set

H0
(2)(�0, L

p
0 ⊗ E0) := ker(�̃0

p). (4.2.18)

Consider the orthogonal projection

B̃z0,p : L0,0
2 (�0, L

p
0 ⊗ E0) −→ H0

(2)(�0, L
p
0 ⊗ E0). (4.2.19)

Let B̃z0,p(Z , Z ′) denote the Schwartz kernel of B̃z0,p with respect to the volume
element induced by gT�0 . It is clearly smooth on �0 ×�0.

Then we can proceed as in Sect. 3.1, in particular, by Proposition 3.1.2, we get that
for �, m � 0, there exists C�,m > 0 such that for any p > 1, we have

∥
∥Bp(z, z

′)− B̃z0,p(z, z
′)
∥
∥
C m (B�(z0,ε)×B�(z0,ε),h p)

� C�,m,γ p
−�. (4.2.20)

In a shorter notation, we will write for the above statement that

Bp − B̃z0,p = O(p−∞), on B
�(z0, ε)× B

�(z0, ε). (4.2.21)

4.3 Near-diagonal expansion of Bergman kernel

The next step is to compute the asymptotic expansion of B̃z0,p around z0 as p →
+∞, where we can apply the standard method via the rescaling technique as in [31,
Subsections 4.1.3–4.1.5]. One difference is that the curvature form R̃L0 has vanishing
order ρz0 − 2 at Z = 0, so that the rescaling factor will be

t = p−1/ρz0 . (4.3.1)

Fix a unit vector eL,z0 of (Lz0 , hz0). This way, we always trivialize L
p
0 as C. Simi-

larly for the line bundle E0. Now, we consider the operator �̃0
p, p ∈ N

∗, as a family
of differential operators acting on C∞(R2, C). Let 〈·, ·〉L2 denote the L2 - inner prod-
uct on C∞(R2, C) associated with the Riemannian metric gT�0 and hE

0 , then �̃0
p is

self-adjoint with respect to this L2-inner product.
Meanwhile, we can equip R

2 ∼= Tz0� with the flat Riemnnian metric gTz0� , let
dV0 denote the corresponding volume form. Let κ(Z) be the smooth positive function
on R

2 defined by the equation

ω�0(Z) = κ(Z) dV0(Z). (4.3.2)

Then κ(0) = 1 and for Z outsideB(0, 4ε), κ(Z) = 1. Let 〈·, ·〉L2,0 denote the standard
L2-inner product on C∞(R2, C).
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For s ∈ C∞(R2, C), Z ∈ R
2, for t = p−1/ρz0 , set

(St s)(Z) := s(Z/t);
Lt := S−1t κ1/2t2�̃0

pκ
−1/2St ;

L0 := �0
RL
0
,

(4.3.3)

where the operator �RL
0
is the model Kodaira Laplacian defined in (4.1.3) acting on

C∞(R2, C) associated to the (1, 1)-form RL
0 given in (4.2.9) with ρ′ = ρz0 . Recall

that BRL
0 (Z , Z ′) denotes the Bergman kernel associated to �RL

0
defined by (4.1.8).

Moreover, by (4.1.3), (4.2.9) and (4.3.2), both Lt , L0 are self-adjoint with respect to
the L2-metric 〈·, ·〉L2,0.

By (4.2.17) and (4.3.3), we get that there exist constants μ0 > 0 and t0 ∈ ]0, 1]
such that for t ∈ ]0, t0],

Spec(Lt ) ⊂ {0} ∪
[

μ0,+∞
[

. (4.3.4)

As explained in Sect. 4.1, L0 also admits a spectral gap with a constant cRL
0

> 0.

Define the orthogonal projectionB0,t,z0 : (L0,0
2 (R2, C), 〈·, ·〉L2,0) −→ ker Lt , and

letB0,t,z0(Z , Z ′) denote the smooth kernel ofB0,t,z0 with respect to dV0. By (4.3.3)
with t = p−1/ρz0 � t0, we have

B̃z0,p(Z , Z ′) = t−2κ−
1
2 (Z)B0,t,z0(Z/t, Z ′/t)κ−

1
2 (Z ′). (4.3.5)

The structure of the differential operator Lt is exactly the same as the rescaled
operator defined in [31, (4.1.29)], so that the computations in the proof of [31, Theorem
4.1.7] still hold (with the vanishing order ρz0 − 2 of R̃L0 at Z = 0). We can conclude
the analogue results in [31, Theorem 4.1.7] for our Lt , as explained in [32, Subsection
4.1]. More precsiely, there exist polynomials Ai, j,r , Bi,r , Cr (r ∈ N, i, j ∈ {1, 2}) in
Z = (Z1, Z2) with the following properties:

– their coefficients are polynomials in RT� , RL , RE and their derivatives at z0 up
to order r + ρz0 − 2;

– Ai, j,r is a homogeneous polynomial in Z of degree degZ Ai, j,r = r , we also have

degZ Bi,r � r + ρz0 − 1, degZ Cr � r + 2ρz0 − 2. (4.3.6)

Moreover,

degZ Bi,r − (r − 1) = degZ Cr − r = 0 mod 2; (4.3.7)

– denote

Or = Ai, j,r
∂2

∂Zi∂Z j
+ Bi,r

∂

∂Zi
+ Cr , (4.3.8)
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then

Lt = L0 +
m
∑

r=1
trOr +O(tm+1). (4.3.9)

The reminder term O(tm+1) is a differential operator up to order 2, and there
exists m′ ∈ N such that for any k ∈ N, t < 1, the derivatives of order � k of the
coefficients of O(tm+1) are dominated by Cm,k tm+1(1 + |Z |)m′ . Note that since
Lt , L0 are self-adjoint with respect to 〈·, ·〉L2,0, so areOr and the remainder term
O(tm+1) in (4.3.9).

Theorem 4.3.1 Fix ρ0 ∈ {2, . . . , ρ�}. Let W : [0, 1] 	 s �→ W (s) ∈ � be a smooth
path such that W (s) ∈ �ρ0 for all s ∈ [0, 1]. For r ∈ N, there exists a smooth
function Fz,r (Z , Z ′) on R

2 × R
2 which is also smooth in z ∈ W ([0, 1]) such that

for any k,m,m′ ∈ N, q > 0, there exists C > 0 such that if p � 1, Z , Z ′ ∈ Tz�,
|Z |, |Z ′| � q/p1/ρ0 ,

sup
|β|+|β ′|�m

∥
∥
∥

∂ |β|+|β ′|

∂Zβ∂Z ′,β ′
( 1

p2/ρ0
Bp(expz(Z), expz(Z

′))

−
k
∑

r=0
Fz,r (p

1/ρ0 Z , p1/ρ0 Z ′)κ−1/2(Z)κ−1/2(Z ′)p−r/ρ0
)∥
∥
∥
C m′ (W )

� Cp
− k−m+1

ρ0 ,

(4.3.10)

whereβ, β ′ ∈ N
2 aremulti-indices, and the normC m′(W ([0, 1])) is takenwith respect

to the smooth path s �→ W (s) since all the objects inside the big bracket of the left-hand
side depend smoothly on z0 ∈ W ([0, 1]).

Moreover, we have the following results:

(1) for r = 0,

Fz,0(Z , Z ′) = B
RL
0

z (Z , Z ′), (4.3.11)

where RL
0 is the model curvature form on �0 = Tz� given in (4.2.9) for the

point z, and B
RL
0

z (Z , Z ′) denotes the corresponding model Bergman kernel as
in (4.1.8);

(2) each Fz,r (Z , Z ′) defines a linear operator Fz,r on L0,0
2 (R2, Ez), and Fz,r is

computable by a certain algorithm (cf. [31, Subsection 4.1.7]) in terms of L0 ,
BRL

0 , and O j , j � r;
(3) if r is odd, then Fz,r (Z , Z ′) is an odd function in (Z , Z ′), in particular,

Fz,r (0, 0) = 0.

Proof Note that when we construct the local operators near each point z in the image
of the path W , that is W ([0, 1]) ⊂ �ρ0 , we need to choose small number ε > 0, as
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the explanation before (4.2.2), to be such that for z ∈ W ([0, 1]), the ball B
�(z, 4ε)

does not intersect with � j with j > ρ0.
Note that for each z0 ∈ W ([0, 1]), we have ρz0 = ρ0. The structure of our operator

Lt given in (4.3.9) are the same as in [31, Theorem 4.1.7] (except the different bounds
on the degrees in Z of Bi,r , Cr ), so that the Sobolev estimates for the resolvent (λ −
Lt )

−1 as well as the asymptotic expansions for B0,t,z0 obtained in [31, Subsections
4.1.4 & 4.1.5] still hold true. In particular, the operators Fz0,r , r ∈ N, are defined in the

same way with smooth Schwartz kernels Fz0,r (Z , Z ′) respectively, and Fz0,0 = BRL
0 .

Then (4.3.10) with m′ = 0 follows from [31, Theorem 4.1.18], (4.2.20) and (4.3.5)
with t = p−1/ρ0 .

For higher m′ � 1, we can see it as follows: if the path W is a constant point z0,
then it is clear that (4.3.10) holds with m′ � 1; if W is not a constant path, with the
assumption that W ([0, 1]) ⊂ �ρz0

, the spectral gaps of the modified operators �̃p

with z0 ∈ W ([0, 1]) are given by the same power of p, so that we can always use the
same rescaling factor t = p−1/ρz0 to construct our operators Lt as a smooth family
parametrized by z0 ∈ W ([0, 1]). Then we can proceed as in [31, Proofs of Theorems
4.1.16 & 4.1.24] by considering the derivatives of (λ−Lt )

−k with respect to s ∈ [0, 1]
via z0 = W (s). Note that the smooth dependence of BRL

0 on z0 ∈ W ([0, 1]) is already
proved in Lemma 4.1.1. In this way, we conclude (4.3.10) with general m′ ∈ N.

Finally, we prove the parity of Fz0,r . Consider the symmetry S−1 : R
2 	 Z �→

−Z ∈ R
2. Since the homogeneous polynomial RL

0 (ω, ω̄) is even, that is, it is invariant

by S−1, we get that Fz0,0 = BRL
0 is invariant under the S−1-conjugation. By the

structure of Or given in (4.3.6) - (4.3.8), we get that

S−1Or S−1 = (−1)rOr . (4.3.12)

Then using the iterative formula for Fz0,r in [31, (4.1.89), (4.1.91)], by induction from
r = 0, we get

S−1Fz0,r S−1 = (−1)rFz0,r . (4.3.13)

In this way, we complete our proof of the theorem. ��

In fact, using the heat kernel approach to Bp as in [31, Section 4.2], we can improve
the expansion (4.3.10) so that we get an analogue of [31, Theorem 4.2.1] as follows.

Theorem 4.3.2 Fix ρ0 ∈ {2, . . . , ρ�} and let W : [0, 1] 	 s �→ W (s) ∈ � be a
smooth path such that W (s) ∈ �ρ0 for all s ∈ [0, 1]. There exists C ′′ > 0 such that
for any k,m,m′ ∈ N, q > 0, there exists C > 0 such that if p � 1, Z , Z ′ ∈ Tz�,
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z ∈ W ([0, 1]), |Z |, |Z ′| � 2ε,

sup
|β|+|β′|�m

∥
∥
∥
∥
∥

∂ |β|+|β′|
∂Zβ∂Z ′,β′

( 1

p2/ρ0
Bp(expz(Z), expz(Z

′))

−
k
∑

r=0
Fz,r (p

1/ρ0 Z , p1/ρ0 Z ′)κ−1/2(Z)κ−1/2(Z ′)p−r/ρ0
)

∥
∥
∥
∥
∥
∥
C m′ (W )

� Cp
− k−m+1

ρ0
(

1+ p1/ρ0 |Z | + p1/ρ0 |Z ′|
)Mk+1,m,m′ exp

{

−C ′′ p1/ρ0 ∣∣Z − Z ′
∣
∣

}

+O(p−∞),

(4.3.14)

where

Mk+1,m,m′ = 2(k + m′ + ρ0 + 1)+ m. (4.3.15)

Proof This is just a consequence of the results of [31, Section 4.2] together with the
spectral gap (4.3.4): applying (4.1.16) and (4.1.17) to Lt , then we can use the heat
kernel estimates to get suitable bounds onB0,t,z0(Z , Z ′). Note that since the vanishing
order of RL

0 at Z = 0 is ρ0 − 2, so that the power of (1+ |Z | + |Z ′|) in [31, Theorem
4.2.5] is replaced by 2(r + ρ0 +m′)+m, which gives (4.3.15). At last, we apply [31,
(4.2.32)] with t = p−1/ρ0 to conclude this theorem. ��
Remark 4.3.3 For the case z ∈ �2 (i.e. iRL

z > 0) in (4.3.14), the results in [31,
Theorem 4.1.21] still hold. In particular, we have a formula

Fz,r (Z , Z ′) = Fz,r (Z , Z ′)BRL
0

z (Z , Z ′), (4.3.16)

where Fz,r (Z , Z ′) is a polynomial in Z , Z ′ with degree � 3r , and B
RL
0

z (Z , Z ′) has
the property

|BRL
0

z (Z , Z ′)| = c(z)
2π

exp

{

− c(z)
4

∣
∣Z − Z ′

∣
∣
2
}

(4.3.17)

with c(z) = iRL
z

ω�(z) .

Remark 4.3.4 Note that by our assumption on the small number ε > 0 taken in the
beginning of the proof of Theorem 4.3.1, we have

⋃

z∈W ([0,1])
B

�(z, 2ε) ⊂ ��ρ0 .

This means that all the points involved in the expansion (4.3.14) can only have the
vanishing order � ρ0 for RL .

When fix a nonzero Z = Z ′ in (4.3.14), the term (1 + 2p1/ρ0 |Z |)Mk+1,m,m′ is
large enough to cover the difference between O(p2/ρ0) and O(p2/ρZ ) with possibly
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ρZ < ρ0, so that the result (4.3.14) is not useful to obtain the accurate asymptotic
expansion of Bp(expz(Z), expz(Z)) when ρ0 > 2.

4.4 Proofs of Theorem 1.2.2, Corollary 1.2.3, and Proposition 1.2.4

Now we prove Theorem 1.2.2 as a consequence of Theorem 4.3.1.

Proof of Theorem 1.2.2 We take Z = Z ′ = 0, m = 0 in (4.3.10), note that
Fz0,2r+1(0, 0) = 0, r ∈ N, z0 ∈ W ([0, 1]), then we get (1.2.3) by setting

br (z0) = Fz0,2r (0, 0), z0 ∈ W ([0, 1]). (4.4.1)

For the second part, on D
∗(a j , 1/4), the estimates (3.2.6) and (3.3.7) hold, from them

we conclude (1.2.5). This way, we complete our proof. ��
Proof of Corollary 1.2.3 After fixing t and γ as in the corollary, we consider suiffi-
ciently large p � 1 and set

K1,p :=
N
⋃

j=1
D(a j , 1/6)\D(a j , te

−pγ

);

K2 := �\
⎛

⎝
⋃

j

D(a j , 1/6)

⎞

⎠ .

(4.4.2)

Then �p,t,γ = K1,p ∪ K2.
By (1.2.5), we conclude that the following identity hold uniformly for x ∈ K1,p as

p→+∞

Bp(x) = 1

2π
(1+ o(1))p. (4.4.3)

Now we deal with the points in K2 which is a compact subset of � independent of
p. By Theorem 2.3.1-(ii), taking any sequence {ε j > 0} j∈N with lim j→+∞ ε j = 0,
we have an increasing sequence of integers {p j } j with p j → +∞ such that for any
p � p j

sup
x∈K2

Bp(x) � (C0 + ε j )p. (4.4.4)

Then we conclude, as p→+∞,

sup
x∈K2

Bp(x) � C0(1+ o(1))p. (4.4.5)

Combining the above result with (4.4.3), we prove this corollary. ��
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Proof of Proposition 1.2.4 Fix 0 < r � e−1. For z j ∈ Vj ⊂ � near a puncture,
(3.3.7), together with (3.2.5) and (3.2.7)(see also [2, Corollary 3.6]) implies that

sup
|z j |�r

Bp(z j ) =
( p

2π

)3/ 2 +O(p) as p→∞ . (4.4.6)

Away from the punctures, on the compact subset K := �\ ∪ j D(a j , r) of �, we
apply (2.3.3) (from [27, Corollary 1.4]) or Corollary 1.2.3 to it, then there existsC > 0
such that

sup
x∈K

Bp(x) � Cp. (4.4.7)

Combining (4.4.6) with (4.4.7), we get (1.2.11). ��
We can describe the derivatives of the Bergman kernel in a coordinate-free fashion

by considering the associated jet-bundles (see Appendix). A pointwise asymptotic
expansion also exists for derivatives of the Bergman kernel functions.

Theorem 4.4.1 For all � ∈ N0 , the �-th jet of the on-diagonal Bergman kernel has a
pointwise asymptotic expansion

j�Bp(x)/ j
�−1Bp(x) = p(2+�)/ρx

⎡

⎣

k
∑

j=0
c�
j (x)p

− j/ρx

⎤

⎦+O(p−(k−�−1)/ρx )

(4.4.8)

for all k ∈ N with the coefficients c�
j (x) ∈ C.

The leading term is given by

c�
0(x) = j�B

RL
0

x (0)/ j�−1BRL
0

x (0) (4.4.9)

in terms of the �-th jet of the model Bergman kernel on the tangent space at x ∈ �

with respect to the geodesic coordinates Z = (Z1, Z2) (see also Theorem 4.3.1). In
particular, if � is odd, then c�

0(x) = 0.

Proof This is a consequence of Theorem 4.3.1 via taking the Taylor expansion for
the Bergman kernel function Bp(expx (Z)) := Bp(expx (Z), expx (Z)) in variable Z
at Z = 0. For the leading term, we have

j�Z=0
[

B
RL
0

x (p1/ρx Z)κ−1(Z)

]

/ j�−1Z=0
[

B
RL
0

x (p1/ρx Z)κ−1(Z)

]

= p�/ρx j�B
RL
0

x (0)/ j�−1BRL
0

x (0)+Ox (p
(�−1)/ρx ).

(4.4.10)

In this way, we conclude (4.4.8) and the formula for c�
0(x). If � is odd, using the fact

that B
RL
0

x (Z) is an even function (by Lemma 4.1.1) in Z , we get c�
0(x) = 0. ��

Theorem 4.4.1 extends [33, Theorem 3.1] for compact Riemann surfaces.
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4.5 Normalized Bergman kernel: proof of Theorem 1.4.1

Different from [25, Theorem1.8], the line bundle (L, h) here is semipositive and hence
no longer uniformly positive in �, this is the reason we only make the statement for
a subset U ⊂ �2 , see also [26, Theorem 1.20] for an analogous result of normalized
Berezin-Toeplitz kernels.

Proof of Theorem 1.4.1 By Theorem 4.3.2, we see that, for the points where iRL is
strictly positive in U , the near-diagonal expansions of Bp(x, y) behave the same as
in [31, Theorems 4.2.1 and 6.1.1]. Using analogous arguments as in [25, Subsection
2.3] and [26, Subsection 2.4] together with the off-diagonal estimate (1.2.12), we can
obtain the estimates in Theorem 1.4.1 - (i) and (ii). Note that instead of b >

√
16k/ε0

in [25, Theorem 1.8], we improve the condition to b �
√
12k/ε0, and here we also

state a sharper estimate in Theorem 1.4.1 - (iii) for the remainder term Rp than [25,
Theorem 1.8]. Therefore, we reproduce the proof in detail as follows.

First of all, since U ⊂ �2, by Theorem 1.2.2, there exists a constant c > 0 such
that for all point x ∈ U and for p � 1,

Bp(x) = Bp(x, x) � cp. (4.5.1)

Now we start with a proof of 1.4.1 - (i). Note that U is relatively compact, so
Proposition 1.2.5 is applicable. Fix k � 1 and let ε > 0 be the sufficiently small
quantity stated in Proposition 1.2.5. Then for x, y ∈ U with dist(x, y) � ε, we have

|Bp(x, y)| � Ck,ε,K p−k+1. (4.5.2)

Recall that ε0 := infx∈U c(x) > 0. Now we fix b �
√
12k/ε0, and a large enough

p0 ∈ N such that

b

√

log p0
p0

� ε

2
. (4.5.3)

For p > p0, if x, y ∈ U is such that b
√
log p/p � dist(x, y) < ε, since we work

onU ⊂ �2, we take advantage of the expansion in (4.3.14) with the first 2k+1 terms
and with ρ0 = 2, m = m′ = 0, x0 = x , y = expx (Z), and Z ∈ Tx�, in order to
obtain

∣
∣
∣
∣
∣

1

p
Bp(x, y)−

2k
∑

r=0
Fx,r (0,

√
pZ)κ−1/2(Z)p−r/2

∣
∣
∣
∣
∣

� Cp−k−1/2(1+√p|Z |)4k+6 exp {−C ′√p|Z |}+O(p−k−1).

(4.5.4)

There exists a constant Ck > 0 such that for any r > 0,

(1+ r)4k+6 exp(−C ′r) � Ck . (4.5.5)
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Note that |Z | = dist(x, y). By Remark 4.3.3, we have the formula (4.3.16) for
Fx,r with the polynomial factor Fx,r (Z , Z ′), and that the degree of Fx,r (Z , Z ′) is not
greater than 3r , and the fact that ε > |Z | � b

√
log p/p, we get for r = 0, . . . , 2k,

|Fx,r (0,
√
pZ)p−r/2| � Cpr exp

{

− c(x)
4

b2 log p

}

, (4.5.6)

where the constant C = CU > 0 does not depend on x ∈ U .
Since we take b �

√
12k/ε0, then for r = 0, . . . , 2k, we get

∣
∣
∣
∣
pr exp

{

− c(x)
4

b2 log p

}∣
∣
∣
∣
� p−k . (4.5.7)

Finally, combining (4.5.1)–(4.5.7), we get the desired estimate in Theorem 1.4.1 - (i).
Let us prove Theorem 1.4.1 - (ii). Fix b �

√
12k/ε0, and we only consider p � 1.

Recall that the constant C0 is defined in (1.2.9), then set

Mb = �πb2C0� ∈ N. (4.5.8)

Then for x ∈ U ⊂ �2 and Z ∈ Tz� with |Z | � b
√
log p/p, set y = expx (Z) ∈ U ,

then dist(x, y) = |Z |. Then

exp

{
c(x)p
4

dist(x, y)2
}

� pMb/2. (4.5.9)

Take the expansion (4.3.14) with ρ0 = 2 and k = Mb, m = m′ = 0, we get

∣
∣
∣
∣
∣
∣

1

p
Bp(x, y)−

Mb∑

r=0
Fz,r (0,

√
pZ)κ−1/2(Z)p−r/2

∣
∣
∣
∣
∣
∣

� Cp−
Mb+1

2 +O(p−∞).

(4.5.10)

By Remark 4.3.3, we get for r � 1,

exp

{
c(x)p
4

dist(x, y)2
} ∣
∣
∣Fz,r (0,

√
pZ)κ−1/2(Z)p−r/2

∣
∣
∣ � Cr |log p|3r/2 p−1/2.

(4.5.11)
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Combining (4.5.9)–(4.5.11), we get

exp
{
c(x)p
4 dist(x, y)2

}

Bp(x, y)
√

Bp(x)
√

Bp(y)
=

c(x)
2π κ−1/2(Z)+O(p−1/2+ε)

√
c(x)
2π +O(p−1)

√
c(y)
2π +O(p−1)

= 1+O(|Z | + p−1/2+ε)

= 1+O(p−1/2+ε) as p→+∞.

(4.5.12)

The termO(p−1/2+ε) in the last line of (4.5.12) represents the function Rp, soTheorem
1.4.1 - (ii) and (iii) follow. ��

Analogously to [41, Proposition 2.8] and [26, Lemma 2.13], we have the following
results, and we refer to [26, Proof of Lemma 2.13] for a proof.

Lemma 4.5.1 With the same assumptions in Theorem 1.4.1, the term Rp(x, y) satisfies
the following estimate: there exists C1 = C1(ε,U ) > 0 such that for all sufficiently
large p, x, y ∈ U with dist(x, y) � b

√
log p/p ,

|Rp(x, y)| � C1 p
1/2+ε dist(x, y)2. (4.4.13)

For given k, � ∈ N, there exists a sufficiently large b > 0 such that there exists a
constant C2 > 0 such that for all x, y ∈ U, dist(x, y) � b

√
log p/p , we have for

p � 1

∣
∣
∣∇�

x,y Np(x, y)
∣
∣
∣ � C2 p

−k . (4.4.14)

5 Equidistribution and smooth statistics of random zeros

Marinescu and Savale [33, Theorem 1.4 and Section 6] proved a equidistribution result
for the zeros ofGaussian randomholomorphic sections of the semipositive line bundles
over a compact Riemann surface. In this section, we apply our results of Sect. 4 to
prove a refined equidistribution result for the random zeros of sp ∈ H0

(2)(�, L p⊗ E).
Furthermore, we will follow the work of [41–43] and [24–26] to study the large
deviations and smooth statistics of these random zeros.

5.1 OnL1-norm of logarithm of Bergman kernel function

An important ingredient to study the semi-classical limit of zeros of Sp (see Definition
1.3.1) is to study the function log Bp(x) as p→+∞.

For t ∈ ]0, 1[ , γ ∈ ]0, 1
2 [ , as in (1.2.8), we set

�p,t,γ = �\
N
⋃

j=1
D
∗(a j , te

−pγ

). (5.1.1)
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We have the following result for the L1-norm of log Bp on �p,t,γ .

Theorem 5.1.1 Let � be a punctured Riemann surface, and let L be a holomorphic
line bundle as above such that L carries a singular Hermitian metric hL satisfying
conditions (α) and (β). Let E be a holomorphic line bundle on � equipped with a
smooth Hermitian metric hE such that (E, hE ) on each chart Vj is exactly a trivial
Hermitian line bundle. Then for the Bergman kernel functions Bp(x) associated to
H0

(2)(�, L p ⊗ E), there exists a constant C = C(t, γ ) > 0 such that for all p � 1

∫

�p,t,γ

| log Bp(z)|ω�(x) � C log p. (5.1.2)

Proof For a compact Riemann surface with a semipositive line bundle, this theorem
follows easily from the uniform two-sided bounds on Bp in [33, Lemma 3.3], and
the analogous arguments, combining with (1.2.5), shall prove this theorem. But in
the sequel, we will sketch a different approach which is independent of the uniform
estimates as in [33, Subsection 3.1].

By Proposition 1.2.4, there exists a constant C > 0 such that

sup
x∈�

log Bp � 3

2
log p + C . (5.1.3)

Thus, in order to prove (5.1.2), it remains to bound the negative part of log Bp.
At first, we claim that there exists a smooth Hermitian metric h̃ on L → � such

that for a small ε > 0 and on �, we have

h � h̃, iR̃L � εω�. (5.1.4)

In fact, since L is positive in �, we can always take a smooth Hermitian metric ĥ
on L such that iR̂L > 0 on� (see [37]). For each z ∈ �, take eL(z) a nonzero element
of Lz , then set

F̂(z) := − log
|eL(z)|ĥ
|eL(z)|h . (5.1.5)

Then F̂ is a smooth real function on � and tends to +∞ at punctures. Then on �,

iR̂L = 2i∂∂ F̂ + iRL > 0. (5.1.6)

Now we modify F̂ to a new function F̃ such that F̃ is a smooth function on � with
the properties:

(1) maxz∈� |F̃ | � M0, where M0 � 1 is some constant.
(2) i∂∂ F̃ ≡ 0 on each local chart {0 < |z j | < r0} ⊂ Vj , where 0 < r0 < e−1 is

given, and Vj is the local chart in the assumption (β).
(3) F̃ = F̂ on the subset �\ ∪ j {0 < |z j | < 2r0}.
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Hence there exists δ � 1 such that

sup
z∈�

∣
∣
∣
∣
∣

i∂∂ F̃(z)

ω�(z)

∣
∣
∣
∣
∣
� δ. (5.1.7)

Now we set a new smooth metric on L → �,

h̃(·, ·)z := e(−F̃(z)+M0)/2δh(·, ·)z . (5.1.8)

It is clear that h � h̃, and we have

R̃L = 1

2δ
i∂∂ F̃ + RL , (5.1.9)

which implies that the metric h̃ satisfies the second condition in (5.1.4).
Moreover, choosing properly ε > 0, and fix a large p0 ∈ N, we have for p � p0

and globally on �,

(p − p0)iRL + p0iR̃L � p0εω�. (5.1.10)

Let x ∈ � and U0 ⊂ � be a small coordinate neighborhood of x on which there
exist holomorphic frames eL of L → U0 and eE of E → U0. Letψ, ψ̃, ψE ∈ C∞(U0)

be the subharmonic weights of h, h̃ and hE , respectively, onU0 relative to eL , eE , that
is, |eL |2h = e−2ψ and etc. A suitable scalar multiplication of the section eL allows us
to assume that ψ � 0. The condition that h � h̃ implies ψ̃ � ψ .

Consider a p0 (that will be chosen momentarily) and write L p = L p−p0 ⊗ L p0 .
Now for p > p0 on L p ⊗ E , recall that h p := h⊗p ⊗ hE , and we set a new metric

Hp := h⊗(p−p0) ⊗ h̃⊗p0 ⊗ hE . (5.1.11)

Then by (5.1.10) (c1(E, hE ) on � can be properly bounded), for p > p0,

c1(L
p ⊗ E, Hp) � p0εω� , (5.1.12)

where ε > 0 is chosen sufficiently small. The local weight of the metric Hp on U0

with respect to the frame epL ⊗ eE is �p := (p − p0)ψ + p0ψ̃ + ψE .
Now as in the proof of [20, Theorem 4.3], we need to prove that there exist constants

C1 > 0, p0 � 1 such that for p > 2p0 and all z ∈ U0, there is a section sz,p ∈
H0

(2)(�, L p), such that sz,p(z) 
= 0 and

∫

�

|sz,p|2Hp
ω� � C1|sz,p(z)|2Hp

. (5.1.13)

The technical part is to prove the existence of sz,p. Since (5.1.12) holds globally
on � and (�, ω�) is complete, we can proceed as in [16, Proof of Theorem 5.1] and
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[20, (4.23) - (4.31)]. More precisely, one can construct the local holomorphic sections
near x as in (5.1.13) by the Ohsawa–Takegoshi extension theorem [36], then applying
the L2-estimates for ∂-operator on complete Kähler manifold (see [20, Theorem 4.1
- (ii)] or [18, Théorème 5.1]) to modify these local holomorphic sections to finally
obtain global ones as wanted for (5.1.13). We may and will choose sz,p such that

∫

�

|sz,p|2Hp
ω� = 1 , |sz,p(z)|2Hp

� 1

C1
. (5.1.14)

Since h � h̃ on �, the first property of (5.1.14) and the definition of Hp imply that

∫

�

|sz,p|2h p
ω� � 1 . (5.1.15)

Then the second property of (5.1.14) implies that

|sz,p(z)|2h p
� 1

C1
e2p0(ψ̃(z)−ψ(z)) . (5.1.16)

Note that the quantity e2p0(ψ̃(z)−ψ(z)), defined on U0, actually is a global function
on �, by the definition of h̃ in (5.1.8),

e2p0(ψ̃(z)−ψ(z)) = h⊗p0
z /h̃⊗p0

z = ep0(F̃(z)−M0)/2δ. (5.1.17)

Recall the variational characterization of the Bergman kernel,

Bp(z) = max
{

|sp(z)|2h p
: s ∈ H0

(2)(�, L p ⊗ E), ‖sp‖L2 = 1
}

. (5.1.18)

Note that each time we work on a small local chart of a point x ∈ �, then we can use
finitely many such local charts to cover the set �\ ∪ j V j . As a consequence, we can
choose uniformly the constant C1 � 0 for all points z ∈ �\ ∪ j V j , from (5.1.15) -
(5.1.18), we get

log Bp(z) � log |sz,p(z)|2h p
� p0

2δ
(F̃(z)− M0)− logC1 =: H(z) , (5.1.19)

where H � 0. For the point z ∈ �p,t,γ ∩ Vj , we need use (3.2.6) and (3.3.7) to get
a lower bound for log Bp(z). So that (5.1.19) holds uniformly for all z ∈ �p,t,γ for
p � 1.

Since F̃ is smooth on � and
∫

�
ω� <∞, then H ∈ L1(�, ω�), so that we get the

inequality (5.1.2). ��
Remark 5.1.2 As we saw from the above, Theorem 5.1.1 is closely related to the
situations solved in [16, Theorem 5.1] or in [20, Theorems 4.3 and 4.5]. If we regard
L as a holomorphic line bundle on� with singularmetric h, the results in [16, Theorem
5.1] or in [20, Theorem4.3] can apply ifwe use a smoothKählermetric on�. However,
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here ω� on� becomes singular. If we work on the noncompact model� with smooth
Kähler metric ω� , then [20, Theorem 4.5] applies only on the open subset away from
the vanishing points �∗ = {z ∈ � : RL

z = 0} of RL . Therefore, we cannot apply [16,
Theorem 5.1] or [20, Theorems 4.3 and 4.5] directly to obtain our Theorem 5.1.1, but
the basic strategy of the proof remains the same.

5.2 On Tian’s approximation theorem

Tian’s approximation theorem and its analogues are the key step to obtain the equidis-
tribution result of random zeros for Sp. Now, let us work out a version of Tian’s
approximation theorem in our setting. For each p � 1, consider the Kodaira map,

�p : � P(H0
(2)(�, L p ⊗ E)∗). (5.2.1)

We will use ωFS to denote the Fubini-Study metric on P(H0
(2)(�, L p ⊗ E)∗) (see [31,

Subsection 5.1.1]). IfU is a relatively compact open subset of �, then for sufficiently
large p, �p|U is well-defined, and the pull-back �∗pωFS |U is a smooth form on U . In
general, �∗pωFS defines a measure on � (which might be singular), that is called the
induced Fubini-Study current (or form) on �. It is well-known that

�∗pωFS = pc1(L, h)+ c1(E, hE )+ i
2π

∂∂ log Bp(x). (5.2.2)

For any open subet U ⊂ �, recall that the norm ‖ · ‖U ,−2 for the measures or
distributions on � was defined in (1.3.4).

Definition 5.2.1 (Convergence speed) Let {cp}p be a sequence of positive numbers
converging to 0 (as p → +∞), and let {Tp}p and T be measures on � with full
measures bounded by a fixed constant.We say that the sequence {Tp}p converges onU
to T with speedO(cp) if there exists a constantC > 0 such that ‖Tp−T ‖U ,−2 � Ccp
for all sufficiently large p.

Theorem 5.2.2 (Tian’s approximation theorem) Let � be a punctured Riemann sur-
face, and let L be a holomorphic line bundle as above such that L carries a singular
Hermitian metric hL satisfying conditions (α) and (β). Let E be a holomorphic line
bundle on � equipped with a smooth Hermitian metric hE such that (E, hE ) on each
chart Vj is exactly the trivial Hermitian line bundle. We have the convergences of the
induced Fubini-Study forms as follows.

(i) For any relatively compact open subset U ⊂ � , we have the convergence

1

p
�∗pωFS −→ c1(L, hL)

in the norm ‖ · ‖U ,−2 as p → ∞, with speed O(log p/p) on U. In particular,
we have the weak convergence of measures on � ,

1

p
�∗pωFS −→ c1(L, hL).
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(ii) For any relatively compact open subset U ⊂ �2 , for any � ∈ N , there exists
C�,U > 0 such that for p � 1,

∥
∥
∥
∥

1

p
�∗pωFS − c1(L, hL)

∥
∥
∥
∥
C �(U )

� C�,U

p
. (5.2.3)

(iii) Fix x ∈ � , there exists Cx > 0 such that for all p � 1, we have

∣
∣
∣
∣

1

p
(�∗pωFS)(x)− c1(L, h)(x)

∣
∣
∣
∣
� Cx√

p
. (5.2.4)

Proof By (5.2.2), we have

1

p
�∗pωFS − c1(L, hL) = 1

p
c1(E, hE )+ i

2π p
∂∂ log Bp(x).

Note that any compact set in� will lie in�p,t,γ for all p � 1, then (i) follows directly
from Theorem 5.1.1 and the definition of ‖ · ‖U ,−2.

When the open subsetU is relatively compact in�2, then the asymptotic expansion
Bp(x) onU behaves the same as in [31, Theorems 4.1.1 and 6.1.1], so that (ii) follows
from the same arguments for [31, Theorem 5.1.4 and Corollary 6.1.2].

Now we consider (iii). If x ∈ �2, then (5.2.4) follows from (ii). If x ∈ �\�2, then
by Theorems 1.2.2 and 4.4.1, we conclude that

∣
∣
∣
∣

1

p
(�∗pωFS)(x)− c1(L, h)(x)

∣
∣
∣
∣
� Cx

p1− 2/ρx
, (5.2.5)

then by ρx � 4, we get (5.2.4). In this way, we complete the proof. ��
The original Tian’s approximation theorem, startedwithTian [45] and further devel-

oped byRuan [38], Catlin [11], andZelditch [48], is for the case of positive line bundles
on compact Kähler manifolds. Then Ma and Marinescu [31] extended it for the uni-
formly positive line bundles on complete Hermitianmanifolds. For big or semipositive
line bundles equipped with possibly singular Hermitianmetrics, the (1, 1)-current ver-
sions of Tian’s approximation theorem have been widely studied, such as by Coman
and Marinescu [15, 16], Dinh, Ma, and Marinescu [20].

5.3 Equidistribution of random zeros and convergence speed

In this subsection, we give a proof of Theorem 1.3.2. We only consider p � 1. The
standard Gaussian holomorphic section Sp is defined in Definition 1.3.1. By [31,
Subsection 5.3] (see also [24, Theorem 1.1]), we know that E[[Div(Sp)]] exists as a
positive distribution (hence a measure) on �, and we have the identity

E[[Div(Sp)]] = �∗pωFS = pc1(L, h)+ c1(E, hE )+ i
2π

∂∂ log Bp(x). (5.3.1)
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Let V be a Hermitian vector space of complex dimension d + 1. On projective
space P(V ∗), let σFS denote the normalized Fubini-Study volume form on P(V ∗) so
that it defines a uniform probability measure on P(V ∗), that is,

σFS := ωd
FS

. (5.3.2)

Meanwhile, for a non-zero ξ ∈ V ∗, let Hξ = ker ξ be the hyperplane in V so that it
defines a positive (1, 1)-current [Hξ ] on P(V ). Similar to (1.3.4), we can define the
norm ‖ · ‖U ,−2 for (1, 1)-currents.

Theorem 5.3.1 ([21, Theorem 4]) Let (X , ω) be a Hermitian complex manifold of
dimension n and let U be a relatively compact open subset of X. Let V be a Hermitian
vector space of complex dimension d + 1. There exists a constant C > 0 independent
of d such that for every γ > 0 and every holomorphic map � : X −→ P(V ) of
generic rank n, we can find a subset E ⊂ P(V ∗) satisfying the following properties:

(1) σFS(E) � Cd2e−γ /C .
(2) If [ξ ] is outside E, the current �∗([Hξ ]) is well-defined and we have

∥
∥�∗([Hξ ])−�∗ωFS

∥
∥
U ,−2 � γ. (5.3.3)

Now we can give the proof of Theorem 1.3.2.

Proof of Theorem 1.3.2 At first, Theorem 1.3.2 - (i) follows from Theorem 5.2.2 - (i)
and (5.3.1).

Let us focus on the proof of Theorem 1.3.2 - (ii). Consider the probability space
(P(H0

(2)(�, L p ⊗ E)), σFS), to each [sp] ∈ P(H0
(2)(�, L p ⊗ E)), we associated with

the measure defined by its zero divisor Div(sp); this way, we constructed a random
variableµp valued in themeasures on�. Thenµp has the sameprobability distribution
as [Div(Sp)]. So, now we proceed with the proof for the sequence {µp}p using the
arguments as in [21, Proof of Theorem 2].

Let U ′ be a relatively compact open subset in � such that U ⊂ U ′. For each
p � 1, take V = H0

(2)(�, L p ⊗ E)∗ in Theorem 5.3.1 and map � is given by the
Kodaira map �p, when we restrict the map to U ′, so that 5.3.1 applies. Note that for
[sp] ∈ P(H0

(2)(�, L p ⊗ E)), the positive (1, 1)-current (hence measure) �∗p([Hsp ])
on U ′ is exactly the measure [Div(sp)]|U ′ .

Since the constant C in Theorem 5.3.1 is independent of the choices of d or γ . We
take the sequence γp = 4C log p. We conclude that for all p � 1,

σFS

(∥
∥
∥
∥

1

p
µp −

1

p
�∗pωFS

∥
∥
∥
∥
U ,−2

>
4C log p

p

)

� C ′

p2
, (5.3.4)

with certain constantC ′ > 0. Then by the equivalence between [Div(Sp)] andµp and
Theorem 5.2.2 - (i), we get for p � 1,

Pp

(∥
∥
∥
∥

1

p
[Div(Sp)] − c1(L, h)

∥
∥
∥
∥
U ,−2

>
C̃ log p

p

)

� C ′

p2
, (5.3.5)
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Since
∑

p
C ′
p2

<∞, we conclude exactly 1.3.2 - (ii). ��

Remark 5.3.2 The probability inequality (5.3.5) has a similar nature as our large devi-
ation estimates (1.4.6) (whose proof is given in the next subsection). In fact, from
(1.4.6), one can also deduce the equidistribution result for Sp on U but without the
convergence speedO(log p/p). Ifwe take the sequenceλp ∼= δ p in (5.3.4) and (5.3.5),
then we get

Pp

(∥
∥
∥
∥

1

p
[Div(Sp)] − c1(L, h)

∥
∥
∥
∥
U ,−2

> δ

)

� C ′ p2e−cδ p, (5.3.6)

For a given δ, the above inequality is less sharp than (1.4.6).

5.4 Large deviation estimates and hole probability

In this subsection, we will prove Theorem 1.4.2 and Proposition 1.4.3, which consists
of the arguments in [25, Subsection 3.3–3.6] with small modifications. We always
assume the geometric conditions in Sect. 1.1. For an open subset U ⊂ �, sp ∈
H0

(2)(�, L p ⊗ E), set

MU
p (sp) := sup

x∈U
|sp(x)|h p . (5.4.1)

The following proposition is an extension of [25, Theorem 1.4 and Proposition 1.9] for
semipositive line bundles, as an application of Proposition 1.2.4 and Theorem 1.4.1.

Proposition 5.4.1 Let U be a relatively compact open subset in �. For any δ > 0,
there exists CU ,δ > 0 such that for all p � 1,

Pp

({

sp :
∣
∣
∣logMU

p (sp)
∣
∣
∣ � δ p

})

� e−CU ,δ p2 . (5.4.2)

As a consequence, there exists C ′U ,δ > 0 such that for all p � 1,

Pp

({

sp :
∫

U

∣
∣ log |sp|h p

∣
∣ω� � δ p

})

� e−C
′
U ,δ p

2
. (5.4.3)

Proof At first, the proof of (5.4.3) follows from the same arguments as in [25, Sub-
section 3.4] and (5.4.2). So we now focus on proving (5.4.2).

As explained in [25, Subsection 3.3], the proof of (5.4.2) consists of two parts:

(1) Using the uniform upper bound on Bp(x) fromProposition 1.2.4 and proceeding
as in [25, Subsection 3.1] (in particular, [25, Corollary 3.6]), then we get

Pp

({

sp : MU
p (sp) � eδ p

})

� e−CU ,δ p2 .
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(2) Since �2 is an open dense subset of �, then for any (non-empty) open subset
U , we can always find a small open ball in B ⊂ U ∩�2 such that the expansion
in Theorem 1.4.1 for Np(x, y) holds for x, y ∈ B. Then we consider a sequence
of lattices �p in B with mesh ∼ 1√

p and proceed as in [25, Subsection 3.3], we
conclude

Pp

({

sp : MU
p (sp) � e−δ p

})

� e−CU ,δ p2 .

In this way, we get (5.4.2). The proposition is proved. ��

Remark 5.4.2 Since Proposition 1.2.4 gives the global uniformupper bound for Bp(x),
if U is an open subset but not relatively compact in �, (5.4.2) still holds.

Now we are ready to prove Theorem 1.4.2.

Proof of Theorem 1.4.2 Let us start with Theorem 1.4.2 - (i). Fix ϕ ∈ C∞c (�) with
suppϕ ⊂ U , by Poincaré-Lelong formula (1.3.3), we have

〈
1

p
[Div(Sp)], ϕ

〉

−
∫

�

ϕc1(L, h) =
√−1
pπ

∫

�

log |Sp|h p ∂∂ϕ + 1

p
〈c1(E, hE ), ϕ〉.

(5.4.4)

Since ϕ has a compact support in U , so has ∂∂ϕ. Then

∣
∣
∣
∣
∣

√−1
pπ

∫

�

log |Sp|h p ∂∂ϕ

∣
∣
∣
∣
∣
�
‖ϕ‖C 2(U )

pπ

∫

U

∣
∣log |Sp(x)|h p

∣
∣ ω�(x). (5.4.5)

We fix a sufficiently small ε > 0 such that

δ − 2ε > 0.

Since the term 1
p c1(E, hE ) converges to 0 as p→∞, there exists an integer p0 ∈ N

(depending on (E, hE )) such that for all p � p0,

∣
∣
∣
∣

1

p
〈c1(E, hE ), ϕ〉

∣
∣
∣
∣
�

ε‖ϕ‖C 2(U )

π
· (5.4.6)

Applying (5.4.3) to the right-hand side of (5.4.5) with δ − 2ε, we get, for p � 1,

P

(
1

p

∫

U

∣
∣
∣ log

∣
∣Sp(x)

∣
∣
h p

∣
∣
∣ω�(x) > δ − 2ε

)

� e−Cp2 . (5.4.7)
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For p � p0, except the event from (5.4.7) of probability � e−Cp2 , we have that, for
all ϕ ∈ C∞c (U ),

∣
∣
∣
∣

〈
1

p
[Div(Sp)] − c1(L, h), ϕ

〉∣
∣
∣
∣

�
‖ϕ‖C 2(U )

pπ

∫

U

∣
∣log |Sp(x)|h p

∣
∣ ω�(x)+

∣
∣
∣
∣

1

p

〈

c1(E, hE ), ϕ
〉
∣
∣
∣
∣

� 1

π

(‖ϕ‖C 2(U )(δ − 2ε)+ ε‖ϕ‖C 2(U )

)

� ‖ϕ‖C 2(U )

δ − ε

π
, (5.4.8)

Equivalently, except the event in (5.4.7) of probability � e−Cp2 , we have

∥
∥
∥
∥

1

p
[Div(Sp)] − c1(L, hL)

∥
∥
∥
∥
U ,−2

� δ − ε

π
. (5.4.9)

Hence (1.4.6) follows.
Now we consider Theorem 1.4.2 - (ii). If U is still relatively compact in �, then

(1.4.7) follows from (1.4.6) and the arguments as in [25, Subsection 3.6]. However,
here we allowU to contain the punctures. Since the line bundle L is positive on�, the
arguments [25, Subsection 3.5] (to control the vanishing order at punctured points)
together with Proposition 5.4.1 show that [25, Theorem 1.10] still holds in our case.
As a consequence, the arguments as in [25, Subsection 3.6] still apply and we get
(1.4.7) in full generality. Finally, using Borel-Cantelli type arguments to (1.4.7), we
get (1.4.8). ��
Proof of Proposition 1.4.3 The upper bound (1.4.9) follows directly from (1.4.7) with
δ = AreaL(U ). The lower bound (1.4.10) follows from the same arguments as in [43,
Subsection 4.2.4] (see also [25, Subsection 3.7]). ��

5.5 Smooth statistics: leading term of number variances

Following Shiffman and Zelditch [41, §3], we now introduce the variance current of
[Div(Sp)]. Let π1, π2 : � × � −→ � denote the projections to the first and second
factors. Then if S and T are two distributions on �, then we define a distribution on
� ×� as follows

S � T := π∗1 S ∧ π∗2 T . (5.5.1)

In particular, [Div(Sp)]� [Div(Sp)] defines a random distribution on � ×�. In the
same time, we introduce the following notation: for a current T on � ×�, we write

∂T = ∂1T + ∂2T , (5.5.2)

where ∂1, ∂2 denote the corresponding ∂-operators on the first and second factors of
� ×�. Similarly, we also write ∂T = ∂1T + ∂2T .
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Definition 5.5.1 The variance current of [Div(Sp)], denoted asVar[Sp], is a distribu-
tion on � ×� defined by

Var[Sp] := E
[[Div(Sp)]� [Div(Sp)]

]− E
[[Div(Sp)]

]

� E
[[Div(Sp)]

]

(5.5.3)

Now we consider only the real test functions. For ϕ ∈ C∞c (�, R), we have

Var
[〈[Div(Sp)], ϕ

〉] = 〈Var[Sp], ϕ � ϕ
〉

. (5.5.4)

For t ∈ [0, 1], we set the function

G̃(t) := − 1

4π2

∫ t2

0

log(1− s)

s
ds = 1

4π2

∞
∑

j=1

t2 j

j2
. (5.5.5)

This is an analytic function with radius of convergence 1. Moreover, for t ∼ 0, we
have G̃(t) = O(t2).

Recall that Np(z, w) is the normalized Bergman kernel defined in (1.4.1).

Definition 5.5.2 (cf. [41, Theorem 3.1]) For (z, w) ∈ � ×�, define

Qp(z, w) := G̃(Np(z, w)) = − 1

4π2

∫ Np(z,w)2

0

log(1− s)

s
ds. (5.5.6)

Following the calculations in [41, §3.1] and using Theorem 1.4.1 and Lemma 4.5.1,
we have the following results for Qp(z, w) on the open set �2 ×�2.

Proposition 5.5.3 (cf. [41, Lemmas 3.4, 3.5 and 3.7]) Let U be a relatively compact
open subset of X such that U ⊂ �2.

(i) Then there exists an integer p0 ∈ N such that for all p � p0, Bp(z) never
vanishes on U. Moreover, for all p � p0, the function Qp(z, w) is smooth in
the region U ×U\�U (�U denotes the diagonal) and it is C 1 on U ×U.

(ii) Fix b � 0 and ε > 0, then for all sufficiently large p and for x ∈ U, Z ∈ Tx�
with |Z | � b

√
log p, we have

Qp(x, expx (Z/
√
p)) = G̃

(

exp
{

−c(x)|Z |2/4
})

+O(p−1/2+ε), (5.5.7)

where c(x) is defined in (1.2.6).
(iii) For given k, � ∈ N, there exist a sufficiently large b > 0 such that there exist a

constant C > 0 such that for all z, w ∈ U, dist(z, w) � b
√
log p/p, we have

|∇�
z,wQp(z, w)| � Cp−k . (5.5.8)

The same proof of [41, Theorem 3.1] (see also [42, §3.1]) together with Proposition
5.5.3 - (i) shows the following result.
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Theorem 5.5.4 (cf. [41, Theorem 3.1]) We assume the same conditions on �, L and
E as in Theorem 1.2.1. Let U be a relatively compact open subset of �. Then for
sufficiently large p, we have the identity of distribution on U ×U,

Var[Sp]|U×U = −∂1∂1∂2∂2Qp(z, w)|U×U = (
√−1∂∂)z(

√−1∂∂)wQp(z, w)|U×U .

(5.5.9)

Recall that the operator L (ϕ) and the test function space T 3(L, h) are defined in
Definition 1.5.1. Now we give the proof of Theorem 1.5.3.

Proof of Theorem 1.5.3 Fix ϕ ∈ T 3(L, h) with ∂∂ϕ 
≡ 0, and let U be a relatively
compact open subset of � such that suppϕ ⊂ U . Note that U may contain the
vanishing points of RL .

Since L (ϕ) vanishes identically near �∗, then there exists a sufficiently small
δ > 0, such that

L (ϕ)|V (RL ,δ) ≡ 0, (5.5.10)

where V (RL , δ) := {z ∈ � : dist(z, �∗) � δ} is the closed tubular neighbourhood
of �∗ in �. We write

U = U1(δ) ∪U2(δ), (5.5.11)

where U1(δ) := U ∩ V (RL , δ), and U2(δ) = U ∩ (�\V (RL , δ)) is a relatively
compact open subset of �2.

Then by (5.5.9), (5.5.10) and (5.5.11), we have

Var
[ 〈[

Div(Sp)
]

, ϕ
〉 ] = −

∫

U×U
(∂∂ϕ(z)) ∧ (∂∂ϕ(w))G̃(Np(z, w))

= −
∫

U2(δ)×U2(δ)

(∂∂ϕ(z)) ∧ (∂∂ϕ(w))G̃(Np(z, w))

(5.5.12)

Therefore, the calculation reduces for the subset U2(δ). By construction of U2(δ),
Proposition 5.5.3 - (ii) and (iii) hold uniformly for z, w ∈ U2(δ). Then we can proceed
as in [42, §3.1] (see also [26, Proof of Theorem 6.4]), we conclude (1.5.6). ��

Remark 5.5.5 Note that following the work of Shiffman [39], one can obtain the full
expansion of the variance Var

[〈[Div(Sp)], ϕ〉
]

and calculate the subleading term.

For better understanding on the vanishing points of RL and the space T 3(L, h) ,
let us introduce an intuitive but nontrivial lemma; we refer to the short article [4] for
a proof.
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Lemma 5.5.6 Let α be a smooth (1, 1)-form on � such that it only vanishes on a com-
pact subset of � and with finite vanishing orders. Set V (α) := {z ∈ � : α(z) = 0},
and for δ > 0, set

V (α, δ) = {z ∈ � : dist(z, V (α)) � δ} ⊂ �.

Then there exist constants δ0 ∈ ]0, 1[,C0 > 0 such that for any 0 < δ < δ0, we have

∫

V (α,δ)

ω� � C0δ. (5.5.13)

As a consequence of the above lemma, there are always test functions ϕ in T 3(L, h)

such that the vanishingpoints ofL (ϕ)near�∗ have arbitrarily small size. For example,
consider the set U1(δ) given in (5.5.11), by Lemma 5.5.6, there exists a constant
CU > 0 independent of δ such that

∫

U1(δ)

ω� � CU δ. (5.5.14)

If ψ is an arbitrary real test function on � with support in U , then we can modify
the values of ψ on U1(δ) to construct a real test function ψ̃δ such that: it coincides
with ψ outside U1(δ) and is locally constant on U1(δ/2); it satisfies

∥
∥ψ − ψ̃δ

∥
∥
C 0(�)

� ‖ψ‖C 0(�).

This way, we get ψ̃δ ∈ T 3(L, h), and

P∞

(

lim sup
p→+∞

1

p

∣
∣Yp(ψ)− Yp(ψ̃δ)

∣
∣ � CU δ‖ψ‖C 0(�)

)

= 1. (5.5.15)

Since δ is arbitrarily small, we can view 1
p Yp(ψ̃δ) as a δ-approximation of 1

p Yp(ψ).

5.6 Smooth statistics: central limit theorem for random zeros

Let us recall the main result of [44, §2.1]. Let (T , μ) be a measure space with a finite
positive measure μ (with μ(T ) > 0). We also fix a sequence of measurable functions
Ak : T −→ C, k ∈ N such that on T ,

∑

k

|Ak(t)|2 ≡ 1. (5.6.1)

We consider a complex-valued Gaussian process on T defined as

W (t) :=
∑

k

ηk Ak(t), (5.6.2)
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where {ηk} is a sequence of i.i.d. standard complex Gaussian variables. Then for each
t ∈ T , W (t) ∼ NC(0, 1). The covariance function for W is ρW : T × T −→ C given
by

ρW (s, t) := E

[

W (s)W (t)
]

=
∑

k

Ak(s)Ak(t). (5.6.3)

Let {Wp}p∈N be a sequence of independent Gaussian processes on T described as
above, and let ρp(s, t) (p ∈ N) denote the corresponding covariance functions. We

also fix a non-trivial real function F ∈ L2(R+, e−r2/2r dr), and a boundedmeasurable
function ψ : T → R, set

Z p :=
∫

T
F
(∣
∣Wp(t)

∣
∣
)

ψ(t)dμ(t). (5.6.4)

Sodin and Tsirelson proved the following result.

Theorem 5.6.1 ([44, Theorem 2.2]) With the above construction suppose that

(i)

lim inf
p→+∞

∫

T

∫

T

∣
∣ρp(s, t)

∣
∣2α ψ(s)ψ(t) dμ(s) dμ(t)

sups∈T
∫

T

∣
∣ρp(s, t)

∣
∣ dμ(t)

> 0,

for α = 1 if f is monotonically increasing, or for all α ∈ N otherwise;
(ii)

lim
p→+∞ sup

s∈T

∫

T

∣
∣ρp(s, t)

∣
∣ dμ(t) = 0.

Then the distributions of the random variables

Z p − E[Z p]
√

Var[Z p]
(5.6.5)

converge weakly to the (real) standardGaussian distributionNR(0, 1) as p→
+∞.

Now we are ready to present the proof of Theorem 1.5.2.

Proof of Theorem 1.5.2 Let us use the same notation as in the proof of Theorem 1.5.3.
Fix ϕ ∈ T 3(L, h) with ∂∂ϕ 
≡ 0, and fix a sufficiently small δ > 0 as desired.

By (1.3.3), (1.5.4) and (5.5.10) - (5.5.11), we have

Yp(ϕ) =
∫

U2(δ)

1

π
log

∣
∣Sp(x)

∣
∣
h p

(√−1∂∂ϕ
)

(x)+
〈

pc1(L, h)+ c1(E, hE ), ϕ
〉

.

(5.6.6)
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Let f : U2(δ) −→ L , e : U2(δ) −→ E be the continuous sections such that

|f(z)|h ≡ 1, |e(z)|hE ≡ 1 on U2(δ). For each p, fix an orthonormal basis {S p
j }

dp
j=1 of

H0
(2)(�, L p ⊗ E). Then on U2(δ), we write

S p
j (z) = a p

j (z) f
⊗p(z)⊗ e(z). (5.6.7)

Then we can set Ap
j (z) = a p

j (z)/
√

Bp(z), which forms a sequence of measurable
functions on U2(δ) satisfying (5.6.1). Then we have the identity on U2(δ)

Sp(z)
√

Bp(z)
= Wp(z) f

⊗p(z)⊗ e(z), (5.6.8)

where Wp is the Gaussian process on U2(δ) constructed as in (5.6.2). The covariance
function ρp(z, w) for Wp is given by

∣
∣ρp(z, w)

∣
∣ = Np(z, w). (5.6.9)

We take F(r) = log r , (T , μ) = (U2(δ), c1(L, h)|U2(δ)), ψ(z) = 1
π
L (ϕ)(z)

which satisfies the conditions in Theorem 5.6.1. Then let Z p(ϕ) be the randomvariable
defined as in (5.6.4) for Wp on U2(δ).

Then (5.6.6) and (5.6.8) imply that

Yp(ϕ) = Z p(ϕ)+ Cp, (5.6.10)

where Cp is a deterministic constant. Thus the asymptotic normality of Yp(ϕ) is
equivalent to that of Z p(ϕ).

Therefore, the last step is to check the conditions (i) and (ii) in Theorem 5.6.1 for
Np(z, w) with z, w ∈ U2(δ) and for (T , μ) = (U2(δ), c1(L, h)|U2(δ)). SinceU2(δ) is
a relatively compact open subset of �2, Theorem 1.4.1 applies and we proceed as in
the last part of [42, §4 Proof of Theorem 1.2] to complete the proof. ��

Appendix: Jet-bundles and the induced norms

In this appendix, we introduce the necessary notation and notions for the jet bundles
on �. Let (F, hF ) be a real (or complex) vector bundle on � with a Euclidean (or
Hermitian) inner product hF .

For x ∈ �, let Gx (F) denote the germs of local sections of F at x . For � ∈ N,
s ∈ Gx (F), the �-th jet of s at x , denoted by j�x s, is the equivalence class of s in
Gx (F) under the equivalence relation: two germs are equivalent if on some open
coordinate chart containing x where the bundle F is trivialized, they have the same
Taylor expansions at x up to order �. Let J �(F)x denote the vector space of all �-th
jets j�x s, s ∈ Gx (F). Then J �(F)x is finite dimensional, and actually the fibration
∐

x∈� J �(F)x → � defines in a natural way a smooth vector bundle on �, which is
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denoted by J �(F) and called the �-th jet bundle of F on �. Note that J 0(F) is just F
itself.

For an integer � > 0, let π�
�−1 : J �(F) −→ J �−1(F) denote the obvious projection

of vector bundles. Observe that there exists a short exact sequence of vector bundles
over � (cf. [29, pp.121])

0→ S�T ∗� ⊗ F
incl

J �(F)
π�

�−1
J �−1(F)→ 0 , (A.1)

where S�T ∗� is the �-th symmetric tensor power of T ∗�. The map incl is defined
as follows: for x ∈ �, we fix a local chart U around x where F is trivialized as Fx ;
then one element ξ in (S�T ∗�⊗ F)x can be constructed as d f1 d f2 · · · d f�⊗v,
where  denotes the symmetric tensor product, v ∈ Fx and f1, . . . , f� are smooth
functions onU which vanish at x . Then we define incl(ξ) := j�x ( f1 f2 · · · f�⊗ v). As
a consequence, we have the identification of the vector bundles over � as follows,

S�T ∗� ⊗ F ∼= J �(F)
�J �−1(F)

. (A.2)

We equip the vector bundle S�T ∗� ⊗ F with the metric induced by gT� and hF .
For s ∈ Gx (F), let j�x s/ j

�−1
x s ∈ (S�T ∗�⊗ F)x be the unique element determined by

isomorphism (A.2), and let | j�x s/ j�−1x s| denote the corresponding norm. For x ∈ �,
let (Z1, Z2) ∈ R

2 ∼= Tx� denote the normal (geodesic) coordinate centred at x . Then
for any germ s ∈ Gx (F), we have

∣
∣
∣ j�x s/ j

�−1
x s

∣
∣
∣

2 :=
∑

α∈N2|α|=�

1

α!
∣
∣
∣
∣

∂ |α|s
∂Zα

(0)

∣
∣
∣
∣

2

hFx

. (A.3)

This way, we can define a norm on J �(F) as follows, for s ∈ Gx (F),

∣
∣
∣ j�x s

∣
∣
∣

2 :=
�
∑

k=0
‖ j kx s/ j k−1x s‖2, (A.4)

where | j0x s/ j−1x s| := |s(x)|hF .
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